

ETSI GS CIM 004 V1.1.2 (2020-06)

Context Information Management (CIM);
Application Programming Interface (API)

Disclaimer

The present document has been produced and approved by the cross-cutting Context Information Management (CIM) ETSI
Industry Specification Group (ISG) and represents the views of those members who participated in this ISG.

It does not necessarily represent the views of the entire ETSI membership.

GROUP SPECIFICATION

ETSI

ETSI GS CIM 004 V1.1.2 (2020-06)2

Reference
RGS/CIM-0004v112

Keywords
API, architecture, GAP, information model,

interoperability, smart city

ETSI

650 Route des Lucioles
F-06921 Sophia Antipolis Cedex - FRANCE

Tel.: +33 4 92 94 42 00 Fax: +33 4 93 65 47 16

Siret N° 348 623 562 00017 - NAF 742 C

Association à but non lucratif enregistrée à la
Sous-Préfecture de Grasse (06) N° 7803/88

Important notice

The present document can be downloaded from:
http://www.etsi.org/standards-search

The present document may be made available in electronic versions and/or in print. The content of any electronic and/or
print versions of the present document shall not be modified without the prior written authorization of ETSI. In case of any

existing or perceived difference in contents between such versions and/or in print, the prevailing version of an ETSI
deliverable is the one made publicly available in PDF format at www.etsi.org/deliver.

Users of the present document should be aware that the document may be subject to revision or change of status.
Information on the current status of this and other ETSI documents is available at

https://portal.etsi.org/TB/ETSIDeliverableStatus.aspx

If you find errors in the present document, please send your comment to one of the following services:
https://portal.etsi.org/People/CommiteeSupportStaff.aspx

Copyright Notification

No part may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying
and microfilm except as authorized by written permission of ETSI.

The content of the PDF version shall not be modified without the written authorization of ETSI.
The copyright and the foregoing restriction extend to reproduction in all media.

© ETSI 2020.

All rights reserved.

DECT™, PLUGTESTS™, UMTS™ and the ETSI logo are trademarks of ETSI registered for the benefit of its Members.
3GPP™ and LTE™ are trademarks of ETSI registered for the benefit of its Members and

of the 3GPP Organizational Partners.
oneM2M™ logo is a trademark of ETSI registered for the benefit of its Members and

of the oneM2M Partners.
GSM® and the GSM logo are trademarks registered and owned by the GSM Association.

http://www.etsi.org/standards-search
http://www.etsi.org/deliver
https://portal.etsi.org/TB/ETSIDeliverableStatus.aspx
https://portal.etsi.org/People/CommiteeSupportStaff.aspx

ETSI

ETSI GS CIM 004 V1.1.2 (2020-06)3

Contents

Intellectual Property Rights .. 10

Foreword ... 10

Modal verbs terminology .. 10

Executive summary .. 10

Introduction .. 10

1 Scope .. 12

2 References .. 12

2.1 Normative references ... 12

2.2 Informative references .. 13

3 Definition of terms, symbols and abbreviations ... 14

3.1 Terms .. 14

3.2 Symbols .. 15

3.3 Abbreviations ... 16

4 Context Information Management Framework .. 16

4.1 Introduction .. 16

4.2 NGSI-LD Information Model... 17

4.2.1 Introduction... 17

4.2.2 NGSI-LD Meta Model .. 17

4.2.3 Cross Domain Ontology ... 18

4.2.4 NGSI-LD domain-specific models and instantiation .. 19

4.2.5 UML representation .. 20

4.3 NGSI-LD Architectural considerations .. 20

4.3.1 Introduction... 20

4.3.2 Centralized architecture .. 21

4.3.3 Distributed architecture ... 21

4.3.4 Federated architecture ... 22

4.4 Core NGSI-LD @context ... 23

4.5 NGSI-LD Data Representation... 23

4.5.1 NGSI-LD Entity Representation ... 23

4.5.2 NGSI-LD Property Representation ... 24

4.5.3 NGSI-LD Relationship Representation .. 24

4.5.4 Simplified Representation ... 25

4.6 Data Representation Restrictions ... 25

4.6.1 Supported text encodings .. 25

4.6.2 Supported names ... 25

4.6.3 Supported data types for Values ... 26

4.6.4 Supported Entity Content .. 26

4.7 Geospatial Properties .. 27

4.7.1 GeoJSON Geometries ... 27

4.7.2 Representation of GeoJSON Geometries in JSON-LD .. 27

4.8 Temporal properties ... 28

4.9 NGSI-LD Query Language .. 28

4.10 NGSI-LD Geo-query language ... 31

4.11 NGSI-LD Temporal Query language ... 33

5 API Operation Definition ... 34

5.1 Introduction .. 34

5.2 Data types ... 34

5.2.1 Introduction... 34

5.2.2 Common members .. 34

5.2.3 @context ... 34

5.2.4 Entity .. 34

5.2.5 Property .. 35

ETSI

ETSI GS CIM 004 V1.1.2 (2020-06)4

5.2.6 Relationship .. 35

5.2.7 GeoProperty .. 35

5.2.8 EntityInfo .. 36

5.2.9 CsourceRegistration .. 36

5.2.10 RegistrationInfo .. 37

5.2.11 TimeInterval ... 37

5.2.12 Subscription .. 38

5.2.13 GeoQuery .. 39

5.2.14 NotificationParams ... 39

5.2.14.1 NotificationParams data type definition .. 39

5.2.14.2 Additional members .. 39

5.2.15 EndPoint ... 40

5.3 Notification data types .. 40

5.3.1 Notification ... 40

5.3.2 CsourceNotification .. 41

5.3.3 TriggerReasonEnumeration .. 41

5.4 NGSI-LD Fragments .. 41

5.5 Common behaviours... 42

5.5.1 Introduction... 42

5.5.2 Error types .. 42

5.5.3 Error payloads ... 42

5.5.4 JSON-LD validation ... 43

5.5.5 Default @context assignment ... 43

5.5.6 Operation execution .. 43

5.5.7 Term to URI expansion ... 43

5.5.8 JSON-LD Merge Patch Behaviour ... 43

5.6 Context Information Provision ... 44

5.6.1 Create Entity ... 44

5.6.1.1 Description .. 44

5.6.1.2 Use case diagram .. 44

5.6.1.3 Input data .. 44

5.6.1.4 Behaviour .. 44

5.6.1.5 Output data .. 44

5.6.2 Update Entity Attributes ... 44

5.6.2.1 Description .. 44

5.6.2.2 Use case diagram .. 45

5.6.2.3 Input data .. 45

5.6.2.4 Behaviour .. 45

5.6.2.5 Output data .. 45

5.6.3 Append Entity Attributes .. 45

5.6.3.1 Description .. 45

5.6.3.2 Use case diagram .. 45

5.6.3.3 Input data .. 46

5.6.3.4 Behaviour .. 46

5.6.3.5 Output data .. 46

5.6.4 Partial Attribute update ... 47

5.6.4.1 Description .. 47

5.6.4.2 Use case diagram .. 47

5.6.4.3 Input data .. 47

5.6.4.4 Behaviour .. 47

5.6.4.5 Output data .. 48

5.6.5 Delete Entity Attribute .. 48

5.6.5.1 Description .. 48

5.6.5.2 Use case diagram .. 48

5.6.5.3 Input data .. 48

5.6.5.4 Behaviour .. 48

5.6.5.5 Output data .. 49

5.6.6 Delete Entity ... 49

5.6.6.1 Description .. 49

5.6.6.2 Use case diagram .. 49

5.6.6.3 Input data .. 49

5.6.6.4 Behaviour .. 49

ETSI

ETSI GS CIM 004 V1.1.2 (2020-06)5

5.6.6.5 Output data .. 49

5.7 Context Information Consumption ... 50

5.7.1 Retrieve Entity .. 50

5.7.1.1 Description .. 50

5.7.1.2 Use case diagram .. 50

5.7.1.3 Input data .. 50

5.7.1.4 Behaviour .. 50

5.7.1.5 Output data .. 50

5.7.2 Query Entities ... 51

5.7.2.1 Description .. 51

5.7.2.2 Use case diagram .. 51

5.7.2.3 Input data .. 51

5.7.2.4 Behaviour .. 51

5.7.2.5 Output data .. 52

5.8 Context Information Subscription .. 52

5.8.1 Create Subscription ... 52

5.8.1.1 Description .. 52

5.8.1.2 Use case diagram .. 52

5.8.1.3 Input data .. 52

5.8.1.4 Behaviour .. 53

5.8.1.5 Output data .. 53

5.8.2 Update Subscription .. 53

5.8.2.1 Description .. 53

5.8.2.2 Use case diagram .. 53

5.8.2.3 Input data .. 54

5.8.2.4 Behaviour .. 54

5.8.2.5 Output data .. 54

5.8.3 Retrieve Subscription .. 54

5.8.3.1 Description .. 54

5.8.3.2 Use case diagram .. 54

5.8.3.3 Input data .. 55

5.8.3.4 Behaviour .. 55

5.8.3.5 Output data .. 55

5.8.4 Query Subscriptions .. 55

5.8.4.1 Description .. 55

5.8.4.2 Use case diagram .. 55

5.8.4.3 Input data .. 56

5.8.4.4 Behaviour .. 56

5.8.4.5 Output data .. 56

5.8.5 Delete Subscription ... 56

5.8.5.1 Description .. 56

5.8.5.2 Use case diagram .. 56

5.8.5.3 Input data .. 57

5.8.5.4 Behaviour .. 57

5.8.5.5 Output data .. 57

5.8.6 Notification behaviour .. 57

5.9 Context Source Registration ... 58

5.9.1 Introduction... 58

5.9.2 Register Context Source ... 58

5.9.2.1 Description .. 58

5.9.2.2 Use case diagram .. 58

5.9.2.3 Input data .. 59

5.9.2.4 Behaviour .. 59

5.9.2.5 Output data .. 60

5.9.3 Update Context Source Registration ... 60

5.9.3.1 Description .. 60

5.9.3.2 Use case diagram .. 60

5.9.3.3 Input data .. 60

5.9.3.4 Behaviour .. 60

5.9.3.5 Output data .. 61

5.9.4 Delete Context Source Registration .. 61

5.9.4.1 Description .. 61

ETSI

ETSI GS CIM 004 V1.1.2 (2020-06)6

5.9.4.2 Use case diagram .. 61

5.9.4.3 Input data .. 61

5.9.4.4 Behaviour .. 61

5.9.4.5 Output data .. 61

5.10 Context Source Discovery .. 62

5.10.1 Retrieve Context Source Registration ... 62

5.10.1.1 Description .. 62

5.10.1.2 Use case diagram .. 62

5.10.1.3 Input data .. 62

5.10.1.4 Behaviour .. 62

5.10.1.5 Output data .. 62

5.10.2 Query context source registrations .. 63

5.10.2.1 Description .. 63

5.10.2.2 Use case diagram .. 63

5.10.2.3 Input data .. 63

5.10.2.4 Behaviour .. 63

5.10.2.5 Output data .. 64

5.11 Context Source Registration Subscription .. 64

5.11.1 Introduction... 64

5.11.2 Create Context Source Registration Subscription ... 64

5.11.2.1 Description .. 64

5.11.2.2 Use case diagram .. 64

5.11.2.3 Input data .. 65

5.11.2.4 Behaviour .. 65

5.11.2.5 Output data .. 65

5.11.3 Update context source discovery subscription .. 65

5.11.3.1 Description .. 65

5.11.3.2 Use case diagram .. 66

5.11.3.3 Input data .. 66

5.11.3.4 Behaviour .. 66

5.11.3.5 Output data .. 66

5.11.4 Retrieve context source discovery subscription .. 66

5.11.4.1 Description .. 66

5.11.4.2 Use case diagram .. 67

5.11.4.3 Input data .. 67

5.11.4.4 Behaviour .. 67

5.11.4.5 Output data .. 67

5.11.5 Query Context Source Discovery subscriptions ... 67

5.11.5.1 Description .. 67

5.11.5.2 Use case diagram .. 67

5.11.5.3 Input data .. 68

5.11.5.4 Behaviour .. 68

5.11.5.5 Output data .. 68

5.11.6 Delete context source discovery subscription ... 68

5.11.6.1 Description .. 68

5.11.6.2 Use case diagram .. 68

5.11.6.3 Input data .. 69

5.11.6.4 Behaviour .. 69

5.11.6.5 Output data .. 69

5.11.7 Notification behaviour .. 69

5.12 Matching Context Source Registrations ... 70

6 API HTTP binding ... 71

6.1 Introduction .. 71

6.2 Global definitions and resource structure ... 71

6.3 Common behaviours... 73

6.3.1 Introduction... 73

6.3.2 Error types .. 73

6.3.3 Reporting errors .. 74

6.3.4 HTTP request preconditions ... 74

6.3.5 JSON-LD @context resolution ... 74

6.3.6 HTTP response common requirements ... 74

ETSI

ETSI GS CIM 004 V1.1.2 (2020-06)7

6.3.7 Simplified representation of entities ... 75

6.3.8 Notification behaviour .. 75

6.3.9 Csource Notification behaviour .. 75

6.4 Resource: entities ... 75

6.4.1 Description .. 75

6.4.2 Resource definition ... 75

6.4.3 Resource methods ... 75

6.4.3.1 POST ... 75

6.4.3.2 GET ... 76

6.5 Resource: entities/{entityId} .. 77

6.5.1 Description .. 77

6.5.2 Resource definition ... 78

6.5.3 Resource methods ... 78

6.5.3.1 GET ... 78

6.5.3.2 DELETE ... 79

6.6 Resource: entities/{entityId}/attrs .. 79

6.6.1 Description .. 79

6.6.2 Resource definition ... 79

6.6.3 Resource methods ... 80

6.6.3.1 POST ... 80

6.6.3.2 PATCH ... 80

6.7 Resource: entities/{entityId}/attrs/{attrId} ... 81

6.7.1 Description .. 81

6.7.2 Resource definition ... 81

6.7.3 Resource methods ... 82

6.7.3.1 PATCH ... 82

6.7.3.2 DELETE ... 82

6.8 Resource: csources ... 83

6.8.1 Description .. 83

6.8.2 Resource definition ... 83

6.8.3 Resource methods ... 83

6.8.3.1 POST ... 83

6.8.3.2 GET ... 84

6.9 Resource: csources/{registrationId} ... 86

6.9.1 Description .. 86

6.9.2 Resource definition ... 86

6.9.3 Resource methods ... 86

6.9.3.1 GET ... 86

6.9.3.2 PATCH ... 87

6.9.3.3 DELETE ... 87

6.10 Resource: subscriptions .. 88

6.10.1 Description .. 88

6.10.2 Resource definition ... 88

6.10.3 Resource methods ... 88

6.10.3.1 POST ... 88

6.10.3.2 GET ... 89

6.11 Resource: subscriptions/{subscriptionId} .. 90

6.11.1 Description .. 90

6.11.2 Resource definition ... 90

6.11.3 Resource methods ... 90

6.11.3.1 GET ... 90

6.11.3.2 PATCH ... 91

6.11.3.3 DELETE ... 91

6.12 Resource: csourceSubscriptions ... 92

6.12.1 Description .. 92

6.12.2 Resource definition ... 92

6.12.3 Resource methods ... 92

6.12.3.1 POST ... 92

6.12.3.2 GET ... 93

6.13 Resource: csourceSubscriptions/{subscriptionId}.. 94

6.13.1 Description .. 94

6.13.2 Resource definition ... 94

ETSI

ETSI GS CIM 004 V1.1.2 (2020-06)8

6.13.3 Resource methods ... 94

6.13.3.1 GET ... 94

6.13.3.2 PATCH ... 95

6.13.3.3 DELETE ... 96

Annex A (normative): NGSI-LD identifier considerations .. 97

A.1 Introduction .. 97

A.2 Entity identifiers ... 97

A.3 NGSI-LD namespace ... 97

Annex B (normative): Core NGSI-LD @context definition ... 98

Annex C (informative): Examples of using the API .. 100

C.1 Introduction .. 100

C.2 Entity Representation ... 100

C.2.1 Property Graph ... 100

C.2.2 Vehicle Entity ... 101

C.2.3 Parking Entity ... 101

C.2.4 @context .. 102

C.3 Context Source Registration ... 103

C.4 Context Subscription .. 104

C.5 HTTP REST API Examples ... 104

C.5.1 Introduction .. 104

C.5.2 Create Entity of Type Vehicle .. 104

C.5.2.1 HTTP Request .. 104

C.5.2.2 HTTP Response .. 104

C.5.3 Query Entities ... 105

C.5.3.1 Introduction... 105

C.5.3.2 HTTP Request .. 105

C.5.3.3 HTTP Response .. 105

Annex D (informative): Transformation Algorithms .. 106

D.1 Introduction .. 106

D.2 Algorithm for transforming an NGSI-LD Entity into a JSON-LD document (ALG1) 106

D.3 Algorithm for transforming a NGSI-LD Property into JSON-LD (ALG1.1) 107

D.4 Algorithm for transforming a NGSI-LD Relationship into JSON-LD (ALG1.2) 108

Annex E (informative): RDF-compatible specification of NGSI-LD meta-model 109

E.1 NGSI-LD Terms and categories: definitions .. 109

E.2 Bridging Property graphs and RDF graphs .. 109

E.3 Tentative formal definition of NGSI-LD information model ... 110

E.3.1 Introduction .. 110

E.3.2 Core Meta-Model ... 110

E.3.3 Cross-Domain Meta-Model .. 110

E.4 Example .. 112

E.5 Complete Ontology in Turtle RDF Syntax ... 113

Annex F (informative): Gap analysis on the relationship of NGSI-LD and general triple-
based queries .. 117

Annex G (informative): Roadmap of Functionalities .. 119

ETSI

ETSI GS CIM 004 V1.1.2 (2020-06)9

Annex H (informative): Open Issues ... 121

Annex I (informative): Conventions and syntax guidelines... 123

Annex J (informative): Change history ... 124

History .. 125

ETSI

ETSI GS CIM 004 V1.1.2 (2020-06)10

Intellectual Property Rights

Essential patents

IPRs essential or potentially essential to normative deliverables may have been declared to ETSI. The information
pertaining to these essential IPRs, if any, is publicly available for ETSI members and non-members, and can be found
in ETSI SR 000 314: "Intellectual Property Rights (IPRs); Essential, or potentially Essential, IPRs notified to ETSI in
respect of ETSI standards", which is available from the ETSI Secretariat. Latest updates are available on the ETSI Web
server (https://ipr.etsi.org/).

Pursuant to the ETSI IPR Policy, no investigation, including IPR searches, has been carried out by ETSI. No guarantee
can be given as to the existence of other IPRs not referenced in ETSI SR 000 314 (or the updates on the ETSI Web
server) which are, or may be, or may become, essential to the present document.

Trademarks

The present document may include trademarks and/or tradenames which are asserted and/or registered by their owners.
ETSI claims no ownership of these except for any which are indicated as being the property of ETSI, and conveys no
right to use or reproduce any trademark and/or tradename. Mention of those trademarks in the present document does
not constitute an endorsement by ETSI of products, services or organizations associated with those trademarks.

Foreword
This Group Specification (GS) has been produced by ETSI Industry Specification Group (ISG) cross-cutting Context
Information Management (CIM).

The preliminary API work in the present document was completed in April 2018 and the final NGSI-LD API is now
instead standardized in ETSI GS CIM 009 [20].

Modal verbs terminology
In the present document "shall", "shall not", "should", "should not", "may", "need not", "will", "will not", "can" and
"cannot" are to be interpreted as described in clause 3.2 of the ETSI Drafting Rules (Verbal forms for the expression of
provisions).

"must" and "must not" are NOT allowed in ETSI deliverables except when used in direct citation.

Executive summary
The preliminary API work in the present document was completed in April 2018 and the final NGSI-LD API is now
instead standardized in ETSI GS CIM 009 [20].

The present document formally describes the Context Information Management API Specification (preliminary). The
Context Information Management API allows users to provide, consume and subscribe to context information in
multiple scenarios and involving multiple stakeholders. It enables close to real-time access to information coming from
many different sources (not only IoT data sources).

Introduction
The preliminary API work in the present document was completed in April 2018 and the final NGSI-LD API is now
instead standardized in ETSI GS CIM 009 [20].

https://ipr.etsi.org/
https://portal.etsi.org/Services/editHelp!/Howtostart/ETSIDraftingRules.aspx

ETSI

ETSI GS CIM 004 V1.1.2 (2020-06)11

The present document defines the Context Information Management API Specification (preliminary). The Context
Information Management API allows users to provide, consume and subscribe to context information in multiple
scenarios and involving multiple stakeholders.

The present document is labelled "preliminary" because it will be published widely in order to elicit comment and
critique from the ICT community, and their comments will be used to modify and improve the later final API
specification. The present document contains two annexes describing a list of pending issues and features that are
planned to be addressed in the near future. Accordingly, a feedback process is described in the present document.

The ETSI ISG CIM has decided to give the name "NGSI-LD" to the Context Information Management API. The
rationale is to reinforce the fact that the present document leverages on the former OMA NGSI 9 and 10 interfaces [i.3]
and FIWARE NGSIv2 [i.9] to incorporate the latest advances from Linked Data.

ETSI

ETSI GS CIM 004 V1.1.2 (2020-06)12

1 Scope
The preliminary API work in the present document was completed in April 2018 and the final NGSI-LD API is now
instead standardized in ETSI GS CIM 009 [20].

The purpose of the present document is the (preliminary) definition of a standard API for Context Information
Management (NGSI-LD API) enabling close to real-time access to information coming from many different sources
(not only IoT data sources). The present document defines how such an API enables applications to perform updates on
context, register context providers which can be queried to get updates on context, query information on current and
historic context information and subscribe to receive notifications of context changes. The criteria for choice of the API
characteristics are based on results in the Use Cases [i.1]. The present document is labelled "preliminary" because it will
be published widely in order to elicit comment and critique from the user communities and their comments will be used
to modify and improve the later final API specification.

2 References

2.1 Normative references
References are either specific (identified by date of publication and/or edition number or version number) or
non-specific. For specific references, only the cited version applies. For non-specific references, the latest version of the
referenced document (including any amendments) applies.

Referenced documents which are not found to be publicly available in the expected location might be found at
https://docbox.etsi.org/Reference.

NOTE: While any hyperlinks included in this clause were valid at the time of publication, ETSI cannot guarantee
their long term validity.

The following referenced documents are necessary for the application of the present document.

[1] W3C Recommendation 25 February 2014: "RDF Schema 1.1".

NOTE: Available at https://www.w3.org/TR/2014/REC-rdf-schema-20140225/.

[2] W3C Recommendation 16 January 2014: "JSON-LD 1.0 - A JSON-based Serialization for Linked
Data".

NOTE: Available at http://www.w3.org/TR/2014/REC-json-ld-20140116/.

[3] IETF RFC 7231: "Hypertext Transfer Protocol (HTTP/1.1): Semantics and Content".

[4] IETF RFC 7232: "Hypertext Transfer Protocol (HTTP/1.1): Conditional Requests".

[5] IETF RFC 3986: "Uniform Resource Identifier (URI): Generic Syntax".

[6] IETF RFC 8259: "The JavaScript Object Notation (JSON) Data Interchange Format".

[7] IETF RFC 5988: "Web Linking".

[8] IETF RFC 7946: "The GeoJSON Format".

[9] IETF RFC 8141: "Uniform Resource Names (URNs)".

[10] IETF RFC 7807: "Problem Details for HTTP APIs".

[11] IEEE POSIX 1003.2™-1992: "IEEE Standard for Information Technology - Portable Operating
System Interfaces (POSIX®) - Part 2: Shell and Utilities".

[12] IETF RFC 5234: "Augmented BNF for Syntax Specifications: ABNF".

https://docbox.etsi.org/Reference/
https://www.w3.org/TR/2014/REC-rdf-schema-20140225/
http://www.w3.org/TR/2014/REC-json-ld-20140116/

ETSI

ETSI GS CIM 004 V1.1.2 (2020-06)13

[13] Unicode® Technical Standard #10: "Unicode Collation Algorithm".

NOTE: Available at http://unicode.org/reports/tr10/.

[14] Open Geospatial Consortium Inc. OGC 06-103r4: "OpenGIS® Implementation Standard for
Geographic information - Simple feature access - Part 1: Common architecture".

NOTE: Available at https://portal.opengeospatial.org/files/?artifact_id=25355.

[15] UN/CEFACT Common Codes for specifying the unit of measurement.

NOTE: Available at
http://www.unece.org/fileadmin/DAM/cefact/recommendations/rec20/rec20_Rev9e_2014.xls.

[16] IETF RFC 7396: "JSON Merge Patch".

[17] ISO 8601: 2004: "Data elements and interchange formats -- Information interchange --
Representation of dates and times".

NOTE: Available at http://www.iso.org/iso/catalogue_detail?csnumber=40874.

[18] IETF RFC 2818: "HTTP Over TLS".

NOTE: Available at https://tools.ietf.org/html/rfc2818.

[19] IETF RFC 5246: "The Transport Layer Security (TLS) Protocol Version 1.2".

NOTE: Available at https://tools.ietf.org/html/rfc5246.

[20] ETSI GS CIM 009: "Context Information Management (CIM); NGSI-LD API".

2.2 Informative references
References are either specific (identified by date of publication and/or edition number or version number) or
non-specific. For specific references, only the cited version applies. For non-specific references, the latest version of the
referenced document (including any amendments) applies.

NOTE: While any hyperlinks included in this clause were valid at the time of publication, ETSI cannot guarantee
their long term validity.

The following referenced documents are not necessary for the application of the present document but they assist the
user with regard to a particular subject area.

[i.1] ETSI GR CIM 002: "Context Information Management (CIM); Use Cases (UC)".

NOTE: Available at
https://www.etsi.org/deliver/etsi_gr/CIM/001_099/002/01.01.01_60/gr_CIM002v010101p.pdf.

[i.2] Void.

[i.3] OMA OMA-TS-NGSI-Context-Management-V1-0-20100803-C. 03 August 2010: "NGSI Context
Management".

[i.4] ETSI TS 103 264 (V2.1.1): "SmartM2M; Smart Appliances; Reference Ontology and oneM2M
Mapping".

NOTE: Available at
http://www.etsi.org/deliver/etsi_ts/103200_103299/103264/02.01.01_60/ts_103264v020101p.pdf.

[i.5] NGSI-LD Wrapper. Experimental proxy for adaptation between FIWARE and NGSI-LD.

NOTE: Available at https://github.com/Fiware/NGSI-LD_Wrapper.

[i.6] Graph Databases: "New Opportunities for Connected Data". O'Reilly 2nd Edition. Webber,
Robinson, et al. ISBN:1491930896 9781491930892.

http://unicode.org/reports/tr10/
https://portal.opengeospatial.org/files/?artifact_id=25355
http://www.unece.org/fileadmin/DAM/cefact/recommendations/rec20/rec20_Rev9e_2014.xls
http://www.iso.org/iso/catalogue_detail?csnumber=40874
https://tools.ietf.org/html/rfc2818
https://tools.ietf.org/html/rfc5246
https://www.etsi.org/deliver/etsi_gr/CIM/001_099/002/01.01.01_60/gr_CIM002v010101p.pdf
http://www.etsi.org/deliver/etsi_ts/103200_103299/103264/02.01.01_60/ts_103264v020101p.pdf
https://github.com/Fiware/NGSI-LD_Wrapper

ETSI

ETSI GS CIM 004 V1.1.2 (2020-06)14

[i.7] JSON-LD Playground. Experimentation tool for JSON-LD.

NOTE: Available at https://json-ld.org/playground/.

[i.8] J. Frey, K. Müller, S. Hellmann, E. Rahm and M.-E. Vidal, "Evaluation of Metadata
Representations in RDF stores", in Semantic Web Journal, 2017.

[i.9] FIWARE NGSI REST binding version 2.

NOTE: Available at http://fiware.github.io/specifications/ngsiv2/stable/.

[i.10] IETF RFC 6902: "JavaScript Object Notation (JSON) Patch".

3 Definition of terms, symbols and abbreviations

3.1 Terms
For the purposes of the present document, the following terms apply:

NOTE: The letters "NGSI-LD" were added to most terms to confirm that they are distinct from other terms of
similar/same name in use in other organizations, however, in the present document the letters "NGSI-LD"
are generally omitted for brevity.

NGSI-LD Attribute: reference to either the name of an NGSI-LD Property or to the name of an NGSI-LD
Relationship

NGSI-LD Central Broker: NGSI-LD Context Broker that only uses a local storage when serving NGSI-LD requests,
without involving any external Context Sources

NGSI-LD Context Broker: architectural component that implements all the NGSI-LD interfaces

NGSI-LD Context Consumer: agent that uses the query and subscription functionality of NGSI-LD to retrieve context
information

NGSI-LD Context Producer: agent that uses the NGSI-LD context provision and/or registration functionality to
provide or announce the availability of its context information to an NGSI-LD Context Broker

NGSI-LD Context Registry: software functional element where Context Sources register the information that they can
provide

NOTE: It is used by Distribution Brokers and Federation Brokers to find the appropriate Context Sources which
can provide the information required for serving an NGSI-LD request.

NGSI-LD Context Source: source of context information which implements the NGSI-LD consumption and
subscription (and possibly provision) interfaces defined by the present document

NOTE: It is usually registered with an NGSI-LD Registry so that it can announce what kind of information it can
provide when requested to Context Consumers and Brokers.

NGSI-LD Distribution Broker: NGSI-LD Context Broker that uses both, local context information and registration
information from an NGSI-LD Context Registry, to access matching context information from a set of distributed
Context Sources

NGSI-LD Entity: informational representative of something that is supposed to exist in the real world, physically or
conceptually

NOTE: In the NGSI-LD API, any instance of such an entity is uniquely identified by a URI, and characterized
by reference to one or more NGSI-LD Entity Type(s). The API defined by the present document only
allows associating one NGSI-LD Entity Type per NGSI-LD Entity. This restriction will be removed in
future versions.

https://json-ld.org/playground/
http://fiware.github.io/specifications/ngsiv2/stable/

ETSI

ETSI GS CIM 004 V1.1.2 (2020-06)15

NGSI-LD Entity Type: categorization of an NGSI-LD Entity as belonging to a class of similar entities, or sharing a set
of characteristic properties

NOTE: In the NGSI-LD API, an NGSI-LD Entity Type is uniquely identified by a URI.

EXAMPLE 1: "Vehicle" is an NGSI-LD Entity Type and is identified with a proper URI.

EXAMPLE 2: Bob's private car whose plate number is "ABCD1234" is an NGSI-LD Entity whose NGSI-LD
Entity Type Name is "Vehicle".

NGSI-LD External Linked Entity: Linked Entity that is identified through a dereferenceable URI which does not
exist within the current NGSI-LD system

NOTE: It can exist within another NGSI-LD system or within a non-NGSI-LD system.

EXAMPLE: An NGSI-LD Entity, which Entity Type Name is "Book", can be externally linked, through the
"wasWrittenBy" relationship, to a resource identified by the URI
"http://dbpedia.org/resource/Mark_Twain".

NGSI-LD Federation Broker: Distribution Broker that federates information from multiple underlying NGSI-LD
Context Brokers and across domains

NGSI-LD Internal Linked Entity: Linked Entity that exists within the current NGSI-LD system

EXAMPLE: An NGSI-LD Entity, which Entity Type name is "Vehicle", can be internally linked, through the
"isParkedAt" relationship, to another NGSI-LD Entity, of Type Name "Parking", identified by the
URI "urn:ngsi-ld:Parking:Downtown1".

NGSI-LD Linked Entity: NGSI-LD Entity referenced from another NGSI-LD Entity (the linking NGSI-LD Entity) via
an NGSI-LD Relationship

NGSI-LD Linking Entity: NGSI-LD Entity which is the subject of a Relationship to another NGSI-LD Entity (the
linked NGSI-LD Entity) or an external resource (identified by a URI)

NGSI-LD Name: short-hand string (term) that locally identifies an NGSI-LD Entity Type, Property Type or
Relationship Type and which can be mapped to a URI which serves as a fully qualified identifier

EXAMPLE: The sentence "Bob's vehicle's speed is 40 km/h" can be represented by an NGSI-LD Property,
whose Name is "speed", and which characterizes an NGSI-LD Entity, which NGSI-LD Type
Name is "Vehicle". Such names can be expanded to a fully qualified name in the form of URIs, for
instance "http://example.org/Vehicle" or "http://example.org/speed".

NGSI-LD Property: description instance which associates a main characteristic, i.e. an NGSI-LD Value, to either an
NGSI-LD Entity, an NGSI-LD Relationship or another NGSI-LD Property and which uses the special hasValue
property to define its target value

NGSI-LD Relationship: description of a directed link between a subject which is either an NGSI-LD Entity, an
NGSI-LD Property, or another NGSI-LD Relationship on one hand, and an object, which is an NGSI-LD Entity, on the
other hand, and which uses the special hasObject property to define its target object

EXAMPLE: An NGSI-LD Entity of type (Type Name) "Vehicle" (when parked) can be the subject of an
NGSI-LD Relationship which object is a NGSI-LD Entity of type "Parking".

NGSI-LD Value: JSON value (i.e. a string, a number, true or false, an object, an array), or a JSON-LD typed value
(i.e. a string as the lexical form of the value together with a type, defined by an XSD base type or more generally an
IRI), or a JSON-LD structured value (i.e. a set, a list, a language-tagged string)

EXAMPLE: Bob's private car 'speed' NGSI-LD Value is the number 100 (kilometres per hour).

3.2 Symbols
Void.

ETSI

ETSI GS CIM 004 V1.1.2 (2020-06)16

3.3 Abbreviations
For the purposes of the present document, the following abbreviations apply:

ABNF Augmented Backus-Naur Form
API Application Programming Interface
CSV Comma-Separated Values
HTTP Hypertext Transfer Protocol
HTTPS Hypertext Transfer Protocol Secure
IANA Internet Assigned Numbers Authority
ICT Information and Communication Technology
IETF Internet Engineering Task Force
IoT Internet of Things
IRI Internationalized Resource Identifier
ISG Industry Specification Group

ISO International Organization for Standardization
JSON JavaScript Object Notation
JSON-LD JSON Linked Data
NGSI Next Generation Service Interfaces
NID Namespace Identifier
NSS Namespace Specific String
OWL Ontology Web Language
RDF Resource Description Format
REST Representational State Transfer
RFC Request For Comments
SAREF Smart Appliance Reference ontology
TB Technical Body
TLS Transport Layer Security
TSV Tab-Separated Values
UCA Unicode Collation Algorithm
UML Unified Modelling Language
URI Uniform Resource Identifier
URN Uniform Resource Name

UTC Coordinated Universal Time
UTF Unicode (or Universal Coded Character Set) Transformation Format
XSD XML Schema Definition

4 Context Information Management Framework

4.1 Introduction
The preliminary API work developed in the present document was completed in April 2018 and shall be condisered as
historical. Instead, the final NGSI-LD API shall be only referring to ETSI GS CIM 009 [20].

This clause describes technical design principles behind the context information management framework supported by
NGSI-LD. As stated in clause 3.1, the letters "NGSI-LD" which are part of most terms, to confirm that they are distinct
from other terms of similar/same name in use in other organizations, are generally omitted in the present document for
brevity. In the present document, a number of rather obvious typographic conventions and syntax guidelines are
followed and the reader is referred to annex I for details.

ETSI

ETSI GS CIM 004 V1.1.2 (2020-06)17

4.2 NGSI-LD Information Model

4.2.1 Introduction

The NGSI-LD Information Model prescribes the structure of context information that shall be supported by an
NGSI-LD system. It specifies the data representation mechanisms that shall be used by the NGSI-LD API itself. In
addition, it specifies the structure of the Context Information Management vocabularies to be used in conjunction with
the API.

The NGSI-LD Information Model is defined at two levels (see figure 4.2.1-1): the foundation classes which correspond
to the Core Meta-model and the Cross-Domain Ontology. The former amounts to a formal specification of the "property
graph" model [i.6]. The latter is a set of generic, transversal classes which are aimed at avoiding conflicting or
redundant definitions of the same classes in each of the domain-specific ontologies. Below these two levels, domain-
specific ontologies or vocabularies can be devised. For instance, the SAREF Ontology [i.4] can be mapped to the
NGSI-LD Information Model, so that smart home applications will benefit from this Context Information Management
API specification.

The version of the cross-domain model proposed by the present document is a minimal one, aimed at defining the
classes used in this release of the API specification. It will be extended in later versions with classes defining extra
concepts such as mobile vs fixed entities, state properties vs instantaneous vs fixed properties, etc.

Figure 4.2.1-1: Overview of the NGSI-LD Information Model Structure

4.2.2 NGSI-LD Meta Model

Figure 4.2.2-1 provides a graphical representation of the NGSI-LD Meta-Model in terms of classes and their
relationships. To provide additional clarity an informal (non-normative) mapping to the Property Graph Model is also
presented.

ETSI

ETSI GS CIM 004 V1.1.2 (2020-06)18

Figure 4.2.2-1: NGSI-LD Core Meta-Model

Implementations shall support the NGSI-LD Meta-model as follows:

• An NGSI-LD Entity is a subclass of rdfs:Resource [1].

• An NGSI-LD Relationship is a subclass of rdfs:Resource [1].

• An NGSI-LD Property is a subclass of rdfs:Resource [1].

• An NGSI-LD Value shall be either an rdfs:Literal or a node object (in JSON-LD language) to represent
complex data structures [1].

• An NGSI-LD Property shall have a value, stated through hasValue, which is of type rdf:Property [1].

• An NGSI-LD Relationship shall have an object stated through hasObject which is of type rdf:Property [1].

4.2.3 Cross Domain Ontology

Figure 4.2.3-1: NGSI-LD Core Meta-Model plus the Cross-Domain Ontology

Figure 4.2.3-1 describes the concepts introduced by the NGSI-LD Cross-Domain Ontology, which shall be supported
by implementations as follows:

• Location Properties: Are intended to convey geospatial information and implementations shall support them
as defined in clause 4.7.

ETSI

ETSI GS CIM 004 V1.1.2 (2020-06)19

• Temporal Properties: Are intended to convey temporal information and implementations shall support them
as defined in clause 4.8.

• "unitCode" Property: A Property intended to provide the units of measurement of an NGSI-LD Value.
Implementations shall support it as defined in clause 4.5.1.

• Geometry Values: They are a special type of NGSI-LD Value intended to convey geometries corresponding
to geospatial properties. Implementations shall support them as defined in clause 4.7.

• Time Values: They are a special type of NGSI-LD Value intended to convey time instants or intervals
representations. Implementations shall support them as defined in clause 4.8.

Clause 4.4 defines the Core JSON-LD @context which includes the URIs which correspond to the concepts introduced
above.

4.2.4 NGSI-LD domain-specific models and instantiation

This clause is informative and is intended to illustrate the relationship between the NGSI-LD Information Model and
NGSI-LD Domain-specific models.

Figure 4.2.4-1 shows an example of a NGSI-LD domain-specific model. Domain-specific models introduce the specific
entity types required for a particular domain. Figure 4.2.4-1 shows the types Car, Parking, Street, Gate. Entity types can
have further subtypes, e.g. OffStreetParking as subtype of Parking.

Figure 4.2.4-1: Cross-Domain Ontology and instantiation

In addition, two different NGSI-LD Properties are introduced ('hasState', 'reliability').

The 'adjacentTo' Relationship links entities of type 'Parking' with entities of type 'Street'.

ETSI

ETSI GS CIM 004 V1.1.2 (2020-06)20

4.2.5 UML representation

This clause is informative and is intended to show how the NGSI-LD information model could be described using UML
diagrams. The aim of this diagram is to help those readers less familiar with ontology representations or RDF [1] to
understand the NGSI-LD Information Model.

In figure 4.2.5-1 NGSI-LD Entity, Relationship, Property and Value are represented as UML classes. UML associations
are used to interrelate these classes while keeping the structure and semantics defined by the NGSI-LD Information
Model.

Figure 4.2.5-1: NGSI-LD information model as UML

4.3 NGSI-LD Architectural considerations

4.3.1 Introduction

The NGSI-LD API is intended to be primarily an API and does not define a specific architecture. It is envisioned that
the NGSI-LD API can be used in different architectural settings and the architectural assumptions of the API are kept to
a minimum.

As it is not possible to elaborate all possible architectures in which the NGSI-LD API could be used, three prototypical
architectures are presented. The NGSI-LD API shall enable efficient support for all of them, i.e. the design decisions for
the NGSI-LD API take these prototypical architectures into consideration. A real system architecture utilizing the
NGSI-LD API can map to one, take elements from multiple or combine all of the prototypical architectures.

ETSI

ETSI GS CIM 004 V1.1.2 (2020-06)21

4.3.2 Centralized architecture

Figure 4.3.2-1 shows a centralized architecture. In the centre is a Central Broker that stores all the context information.
There are Context Producers that use update operations to update the context information in the Central Broker and
there are Context Consumers that request context information from the Central Broker, either using synchronous
one-time query or asynchronous subscribe/notify operations. The Central Broker answers all requests from its storage.
figure 4.3.2-1 shows one component that acts as both Context Producer and Context Consumer. The general assumption
is that components can have multiple roles, so such components are not explicitly shown in clause 4.3.3 and
clause 4.3.4.

Figure 4.3.2-1: Centralized architecture

4.3.3 Distributed architecture

Figure 4.3.3-1 shows a distributed architecture. The underlying idea here is that all information is stored by the Context
Sources. Context Sources implement the query and subscription part of the NGSI-LD API as a Context Broker does.
They register themselves with the Context Registry, providing information about what context information they can
provide, but not the context information itself, e.g. a certain Context Source registers that it can provide the indoor
temperature for Building A and Building B or that it can provide the speed of cars in a geographic region covering the
centre of a city.

ETSI

ETSI GS CIM 004 V1.1.2 (2020-06)22

Figure 4.3.3-1: Distributed architecture

Context Consumers can query or subscribe to the Distribution Broker. On each request, the Distribution Broker
discovers or does a discovery subscription to the Registry for relevant Context Sources, i.e. those that may provide
context information relevant to the respective request from the Context Consumer. The Distribution Broker then queries
or subscribes to each relevant Context Source, if possible it aggregates the context information retrieved from the
Context Sources and provides them to the Context Consumer. In this mode of operation, it is not visible to the Context
Consumer, whether the Broker is a Central Broker or a Distribution Broker. Alternatively, the architecture allows that
Context Consumers can discover Context Sources through the Registry themselves and then directly request from
Context Sources. This is shown in figure 4.3.3-1 with the fine dashed arrows.

4.3.4 Federated architecture

The federated architecture shown in figure 4.3.4-1 is used in cases where existing domains are to be federated. For
example, different departments in a city operate their own Context Broker-based NGSI-LD infrastructure, but
applications should be able to easily access all available information using just one point of access. The architecture
works in the same way as the distributed architecture described in clause 4.3.3, except that instead of simple Context
Sources, whole domains are registered with the respective Context Broker as point of access. Typically, the domains
will be registered to the federation Context Registry on a more coarse-grained level, providing scopes, in particular
geographic scopes, that can then be matched to the scopes provided in the requests. For example, instead of registering
individual entities like buildings, the domain would be registered with having information about entities of type
building within a geographic area. Applications then query or subscribe for entities within a geographic scope,
e.g. buildings in a certain area of the city. The Federation Server discovers the domain Context Brokers that can provide
relevant information, forward the request to these Brokers and aggregate the results, so the application gets the result in
the same way as in the centralized and distributed cases.

ETSI

ETSI GS CIM 004 V1.1.2 (2020-06)23

Figure 4.3.4-1: Federated architecture

A domain itself can use a centralized or distributed architecture, or could even utilize a federated architecture that
federates sub-domains.

As in the distributed case, it is also possible that applications discover relevant domains through the federation-level
Context Registry and directly contact the Context Brokers in the individual domains.

4.4 Core NGSI-LD @context
The Core NGSI-LD (JSON-LD) @context is defined as a JSON-LD @context which contains:

• The core terms needed to uniquely represent the key concepts defined by the NGSI-LD Information Model, as
mandated by clause 4.2.

• The terms needed to uniquely represent all the members that define the API-related Data Types, as mandated
by clause 5.2 and clause 5.3.

NGSI-LD compliant implementations shall support such Core @context, which shall be implicitly present when
processing or generating context information.

The NGSI-LD @context is publicly available at http://xxxxx . and shall contain all the terms as mandated by annex B.

4.5 NGSI-LD Data Representation

4.5.1 NGSI-LD Entity Representation

An NGSI-LD Entity shall be represented by an object encoded using JSON-LD, a JSON-based format to serialize
Linked Data. The rules described below state the encoding that shall be supported by implementations. Annex D
provides a computational description of this process in terms of an algorithm.

Apart from the terms defined by the Core NGSI-LD @context (mandated by annex B), the @context shall contain, at
least, the following terms:

• One term associated to the Entity Type, mapping the Entity Type Name with its Type Identifier (URI).

ETSI

ETSI GS CIM 004 V1.1.2 (2020-06)24

• One term associated to the name of each Property used by the entity representation (see below), mapping the
Property Name with its Property Identifier (URI). If the Property's range is a data type different than a native
JSON type, then it shall be conveyed explicitly under this term by using a nested JSON object in the form:

- "@type": <Datatype's URI>.

- "@id": <Property's URI>.

• One term associated to the name of each Relationship used by the entity representation, mapping the
Relationship Name with the Relationship Identifier (URI) in the form:

- "@type": "@id".

- "@id": <Relationship's URI>.

The JSON-LD object shall contain at least the following members:

• "id" which value shall be a URI that identifies the Entity.

• "type" which value shall be equal to the Entity Type Name.

• "@context" as mandated by [2], section 5.1. When the context is not available through a Link header (see
clause 6.3.5).

• One member for each Property as per the rules stated in clause 4.5.2.

• One member for each Relationship as per the rules stated in clause 4.5.3.

4.5.2 NGSI-LD Property Representation

An NGSI-LD Property shall be represented by a member whose key is the Property Name (a term) and whose value is a
JSON-LD object including the following members:

• "type": "Property". Mandatory.

• "value": the Property Value (see definition in clause 3.1). Mandatory. If the Value's datatype is a native JSON
data type it shall be encoded directly as the member's value. Otherwise the member's value shall be a JSON
object in the form:

- "@type": <Data Type URI>.

- "@value": Property Value.

• "observedAt": a string as mandated by clause 4.8. Optional.

• "createdAt": a string as mandated by clause 4.8. System generated.

• "modifiedAt": a string as mandated by clause 4.8. System generated.

• "unitCode": a string representing the measurement unit corresponding to the Property value. It shall be
encoded using the UN/CEFACT Common Codes for Units of Measurement [15]. Optional.

• For each of the Properties for which this Property is associated with, a member whose key (a term) is the
Property Name and value is the result of serializing a Property.

• For each of the Relationships for which this Property is associated with, a member whose key (a term) is the
Relationship Name and value is the result of serializing a Relationship.

4.5.3 NGSI-LD Relationship Representation

A NGSI-LD Relationship shall be represented by a member whose key is the Relationship Name (a term) and whose
value is a JSON-LD object with the following terms:

• "type": "Relationship". Mandatory.

ETSI

ETSI GS CIM 004 V1.1.2 (2020-06)25

• "object": the Relationship's object represented by a URI. Mandatory.

• "observedAt" a string as mandated by clause 4.8. Optional.

• "createdAt": a string as mandated by clause 4.8. System generated.

• "modifiedAt": a string as mandated by clause 4.8. System generated.

• For each of the Relationships for which this Relationship is associated with, a member whose key is the
Relationship Name (a term) and whose value is the result of serializing a Relationship as per the rules of
representation of a Relationship.

• For each of the Properties for which this Relationship is associated with, a member whose key is the Property
Name (a term) and whose value is the result of serializing a Property as per the rules of representation of a
Property.

4.5.4 Simplified Representation

The NGSI-LD specification defines an alternative, abbreviated representation of Entities, which allows consuming only
entity data (the target object of each Relationship or the value of each Property) corresponding to the Properties or
Relationships whose subject is the Entity itself. The simplified representation of Entities shall be supported by
implementations and can be selected by Context Consumers through specific request parameters.

The simplified representation of an entity shall include the following:

• A JSON-LD @context as described in clause 4.4.

• A JSON-LD object containing the following members:

- Id, type and @context as described in clause 4.4.

- For each Property a member whose key is the Property Name (a term) and whose value is the Property
Value.

- For each Relationship a term whose key is the Relationship Name (a term) and whose value is the
Relationship's Object (represented as a URI).

4.6 Data Representation Restrictions

4.6.1 Supported text encodings

NGSI-LD implementations shall support the UTF-8 text encoding format. To avoid interoperability problems,
applications shall provide JSON content encoded using UTF-8 and NGSI-LD systems shall also expose such JSON
content using UTF-8.

4.6.2 Supported names

Even though the JSON serialization format allows inclusion of any character in the Unicode space, for the sake of
maximizing interoperability, NGSI-LD restricts Entity Type Names, Property Names and Relationship Names to the
following ABNF grammar:

• nameChar =/ DIGIT / ALPHA

• nameChar =/ %x5F ; _

• name = 1*nameChar

When receiving a JSON-LD object with a Name (Type, Property, Relationship) including characters different than
those expressed above, implementations shall raise an error of type BadRequestData.

ETSI

ETSI GS CIM 004 V1.1.2 (2020-06)26

4.6.3 Supported data types for Values

Compliant NGSI-LD implementations shall support the following data types for representing Values:

• All the JSON native data types as mandated by [6], section 3.

• All the GeoJSON Geometries [8] with the exception of GeometryCollection.

• DateTime string for encoding a timestamp, i.e. a calendar date together with a time of day, expressed in UTC,
using the ISO 8601 [17] Complete Representation and in particular using the 'Extended Format', as described
below:

- The timestamp shall be a string containing Year, Month, Day, Hours, Minutes and Seconds components
using the format YYYY-MM-DDThh:mm:ss as defined in ISO 8601 [17]. In this representation, the
character "-" is used to separate the calendar date components, the character "T" is used to indicate the
start of the time of day portion and the character ":" is used to separate the time of day components.

- All the referred components shall appear in the string; reduced representations are not permitted.

- The Seconds component may optionally contain a decimal fraction. In this case the string shall contain
two integer digits, followed by a comma and then one or more fractional digits, up to a maximum of six.
For example, YYYY-MM-DDThh:mm:ss,ssssss.

- The timestamp string shall not contain time zone related information. All timestamps shall be interpreted
as being expressed in UTC.

• Date string for encoding a calendar date. It uses ISO 8601 [17] Complete Representation using the 'Extended
Format', as described below:

- It shall be a string containing Year, Month, Day components using the format YYYY-MM-DD as defined
in ISO 8601 [17]. In this representation, the character "-" is used to separate the calendar date
components.

- All the referred components shall appear in the string; reduced representations are not permitted.

• Time string for encoding a local time expressed in UTC. It uses ISO 8601 [17] Complete Representation using
the 'Extended Format', as described below:

- It shall be a string containing Hours, Minutes and Seconds components using the format hh:mm:ss as
defined in ISO 8601 [17]. In this representation, the character ":" is used to separate the local time
components.

- All the referred components shall appear in the string; reduced representations are not permitted.

- The string shall not contain expressions of the difference between local time and UTC. All
representations shall be interpreted as being expressed in UTC.

• URI as mandated by ISO 8601 [17], Appendix A, production rule named 'URI'.

Implementations may support additional data types different to those enumerated above, for instance:

• JSON-LD typed value (i.e. a string as the lexical form of the value together with a type, defined by an XSD
base type or more generally an IRI).

• JSON-LD structured value (i.e. a set, a list, a language-tagged string).

4.6.4 Supported Entity Content

In principle, context information providers can publish any kind of data serialized in JSON and encoded in UTF-8.
Nonetheless, to avoid security problems caused by script injection attacks or other attack vectors, the following
characters are prohibited and shall not be part of any value:

• %x3C ; <

• %x3E ; >

ETSI

ETSI GS CIM 004 V1.1.2 (2020-06)27

• %x22 ; "

• %x27 ; '

• %x3D ; =

• %x3B ; ;

• %x28 ; (

• %x29 ;)

When receiving entities (context information) encoded in JSON format and containing values that include the forbidden
characters implementations shall raise an error of type BadRequestData.

4.7 Geospatial Properties

4.7.1 GeoJSON Geometries

Geospatial Properties in NGSI-LD shall be represented using GeoJSON Geometries [8]. With the aim of highlighting
and encoding those Properties which convey geospatial characteristics, NGSI-LD defines a special type of Property
named GeoProperty, defined by the NGSI-LD @context described by the present document in clause 4.4.

When dealing with NGSI-LD Entities, implementations shall interpret JSON-LD nodes of type GeoProperty just as
conventional Properties but with the additional requirement that the Value corresponding to such Property shall be a
GeoJSON Geometry. All the Geometries defined by [8] are allowed except GeometryCollection. In addition,
implementations should take the necessary steps to create the corresponding geo-indexes so that information can be
properly returned when geo-queries are executed.

NGSI-LD defines the following Properties of type GeoProperty. Preferably these Properties should be used if they
semantically fit, but if necessary, additional Properties of type GeoProperty can be defined by Context Producers:

• location is defined as the geospatial Property representing the geographic location of the Entity, e.g. the
location of a building or the current location of a car.

• observationSpace is defined as the geospatial Property representing the geographic location that is being
observed, e.g. by a sensor. For example, in the case of a camera the location of the camera and the observation
space are different and can be disjoint.

• operationSpace is defined as the geospatial Property representing the geographic location in which an Entity,
e.g. an actuator is active. For example, a crane can have a certain operation space.

The defined Properties can also be used as part of Context Source Registrations (see clause 5.2.9). In this case they
represent locations in which Entities with the respective geospatial Properties are contained. For example, a Context
Source that monitors the location of cars in a city may be represented by a Context Source Registration whose Property
location corresponds to the space of the city in which the location of cars is monitored.

4.7.2 Representation of GeoJSON Geometries in JSON-LD

There are certain types of GeoJSON geometries, for instance Polygon, which coordinates are represented using nested
array structures (through the coordinates member). Such representation may introduce serialization problems when
transforming JSON-LD content into RDF graphs. To overcome these issues, optionally, Context Providers can encode
the coordinates value as a JSON string.

Implementations shall accept the referred encoded string value, if and only if, it can be parsed into a JSON Array, as
mandated by [6], that meets the syntax and restrictions mandated by [8] when representing a valid Geometry of the type
specified.

For the avoidance of doubt, regular encodings of GeoJSON coordinates (as JSON Array) shall also be accepted by
implementations, but Context Producers should take into account the implications in terms of RDF compatibility.

ETSI

ETSI GS CIM 004 V1.1.2 (2020-06)28

4.8 Temporal properties
Temporal Properties in NGSI-LD shall be represented based on the DateTime data type as mandated by clause 4.6.3.

With the aim of highlighting and encoding those Properties which convey temporal features, NGSI-LD defines a special
type of Property named TemporalProperty, defined by the NGSI-LD @context as mandated by clause 4.4.

When dealing with NGSI-LD Entities, implementations shall interpret JSON-LD nodes of type TemporalProperty just
as regular Properties, but with the additional requirement that the Value corresponding to such Property shall be based
on DateTime, clause 4.6.3.

NGSI-LD defines the following Properties of type TemporalProperty. Preferably these Properties should be used if they
semantically fit, but if necessary, additional Properties of type TemporalProperty can be defined:

• observedAt is defined as the temporal Property at which a certain Property or Relationship became valid or
was observed. It is represented as a DateTime value. For example, a temperature Value was measured by the
sensor at this point in time.

• createdAt is defined as the temporal Property at which the Entity, Property or Relationship was entered into
an NGSI-LD system. It is represented as a DateTime value.

• modifiedAt is defined as the temporal Property at which the Entity, Property or Relationship was last
modified in an NGSI-LD system, e.g. in order to correct a previously entered incorrect value. It is represented
as a DateTime value.

NOTE: For simplicity reasons, a TemporalProperty is represented only by its Value, i.e. no Properties of
TemporalProperty nor Relationships of TemporalProperty can be conveyed. In more formal language, a
TemporalProperty does not allow reification.

In Context Source Registrations, the defined temporal Properties are represented as JSON arrays of type TimeInterval
(see clause 5.2.11) as the Context Source uses it to describe the period of time for which Entity information, i.e.
Properties and Relationships, are available. Thus, the temporal Properties it can provide are within the given time
intervals. A time interval can be open-ended, i.e. extend up into the present.

4.9 NGSI-LD Query Language
The NGSI-LD Query Language shall be supported by implementations. It is intended to filter out Entities by Attribute
Values (target value of a Property or the target object of a Relationship).

The grammar that defines the query language in ABNF format [12] is described below (it has been validated using
https://tools.ietf.org/tools/bap/abnf.cgi supported by implementations:

Query = QueryTerm *(logicalOp QueryTerm)
QueryTerm = Attribute Operator ComparableValue
QueryTerm =/ Attribute equal CompEqualityValue
QueryTerm =/ Attribute unequal CompEqualityValue
QueryTerm =/ Attribute patternOp RegExp
Attribute = attrName / compoundAttrName / attrPathName
Operator = equal / unequal / greater / greaterEq / less / lessEq
ComparableValue = Number / quotedStr / dateTime / date / time
OtherValue = false / true / null
Value = ComparableValue / OtherValue
Range = ComparableValue dots ComparableValue
ValueList = Value 1*(%x2C Value) … ; Value 1*(, Value)
CompEqualityValue = OtherValue / ValueList / Range / URI
equal = %x3D %x3D ; ==
unequal = %x21 %x3D ; !=
greater = %x3E ; >
greaterEq = %x3E %x3D ; >=
less = %x3C ; <
lessEq = %x3C %x3D ; <=
patternOp = %x7E %x3D ; ~=
dots = %x2E %x2E ; ..
attrNameChar = %x21 / %x23 / %x24 ; ! / # / $
attrNameChar =/ DIGIT / ALPHA
attrNameChar =/ %x5F / %x7E ; _ / ~
attrName = 1*attrNameChar
attrPathName = attrName *(%x2E attrName). ; attrName *(. attrName)

https://tools.ietf.org/tools/bap/abnf.cgi

ETSI

ETSI GS CIM 004 V1.1.2 (2020-06)29

compoundAttrName = attrName *(%x5B attrName %x5D) ; . attrName *([attrName])
quotedStr = String / %x27 *char %x27 ; '*char'
andOp = %x3B ; ;
logicalOp = andOp

• DIGIT and ALPHA are defined by [12].

• Number shall be a number as mandated by the JSON Specification, following the ABNF Grammar, production
rule named number, section 6 of [6].

• String shall be a text string as mandated by the JSON Specification, following the ABNF Grammar,
production rule named String, section 7 of [6].

• char shall be a character as mandated by the JSON Specification, ABNF Grammar, production rule named
char, section 7 of [6].

• false shall be conformant with the JSON ABNF Grammar, production rule named false, section 3 of [6]. It is
intended to represent the Boolean value corresponding to "false".

• true shall be conformant with the JSON ABNF Grammar, production rule named true, section 3 of [6]. It is
intended to represent the Boolean value corresponding to "true".

• null shall be conformant with the JSON ABNF Grammar, production rule named null, section 3 of [6]. It is
intended to represent a JSON value of type null.

• RegExp shall be a regular expression as mandated by [11].

• dateTime shall be a DateTime value as mandated by clause 4.6.3.

• time shall be a Time value as mandated by clause 4.6.3.

• date shall be a Date value as mandated by clause 4.6.3.

• URI shall be a URI as mandated by [5], Appendix A, production rule named URI.

A Query Term (production rule QueryTerm) defines a predicate which serves as a matching condition for Entities. The
constituent parts of a Query Term are:

• an attribute path (production rule named Attribute).

• an operator (production rule named Operator).

• a value (production rule named Value.

EXAMPLE 1: temperature==20.

EXAMPLE 2: temperature.observedAt>=2017-12-24T12:00:00.

EXAMPLE 3: brandName!='Mercedes'.

EXAMPLE 4: isParked==urn:ngsi-ld:OffStreetParking:Downtown1.

EXAMPLE 5: A query encoded as an HTTP Query String, please note that this is HTTP binding specific.

 ?type=Vehicle&q=speed>50;brandName!=Mercedes.

Query Terms may be combined through logical operators that shall be supported by implementations as follows:

• The production rule 'andOp' defines a logical AND operator conveying that the requested entities are those
which meet at the same time the conditions posed by all the Query Terms affected by such an operator.

The syntax of an attribute path is defined by the production rule Attribute, as a list of names. Such list is intended to
address a Property or Relationship included by the matching entities subjacent graph, in accordance with the following
rules:

• Every name in the list shall be expanded to a URI (fully qualified name) as mandated by clause 5.5.7.

ETSI

ETSI GS CIM 004 V1.1.2 (2020-06)30

• The first name shall refer to a Property or Relationship (top level element) whose subject shall be a matching
Entity. Strictly speaking, and as per the JSON-LD representation rules, such (fully qualified) name shall be
equal to the (fully qualified) name of the concerned Property or Relationship.

• Each other name (if present) represents a (sub)Property or (sub)Relationship, starting with the top level
element as subject and continuing through the graph traversal. The element addressed by the last name in the
list is defined as the target element. If only one name is present in the attribute path, then the target element is
the top level one.

If the target element is a Property, the target value is defined as the Value associated to such Property.

If the target element is a Relationship, the target object is defined as the object associated (represented as a URI) to
such Relationship.

If the target element corresponds to a Relationship, the combination of such target element with any operator different
than equal or unequal shall result in not matching.

A Query Term value shall be any of the following (depending on the operator used):

• A literal value (string, number, date, etc.) (production rule named Value).

• A range of values (production rule named Range), specified as a minimum and a maximum value.

• A regular expression (production rule named RegExp).

• A URI (production rule named URI).

• A comma-separated list of literal values (production rule named ValueList).

When comparing dates or times, the order relation considered shall be a temporal one.

When it comes to comparing text strings, implementations:

• Shall follow the recommendations defined by [6], section 8.3.

• Should support the Unicode Collation Algorithm (UCA), as defined by [13].

URI comparison should be performed so that the number of false negatives is minimized, as recommended by [5],
section 6.

The semantics of the different logical operators used by Query Terms are described as follows and shall be supported by
compliant implementations:

• Equal operator (production rule named equal). A matching Entity shall contain the target element and meet
any of the following conditions:

- The Query Term value, e.g. color == 'red':

 Is identical or equivalent to the target value (e.g. matches "red").

 Is included in the target value, if the latter is an array (e.g. matches ["blue","red","green"]).

- If the Query Term value is a list of values (production rule named ValueList), e.g. color=='black', 'red':

 The target value is identical or equivalent to any of the list values (e.g. matches "red").

 The target value includes any of the Query Term values, if the target value is an array (e.g. matches
["red","blue"]).

- If the Query Term value is a range (production rule named Range), e.g. temperature==10..20.

- The target value is in the interval between the minimum and maximum of the range (both included)
(e.g. matches 15).

- If there is no equality between the target value data type and the Query Term value data type, then it shall
be considered as not matching.

ETSI

ETSI GS CIM 004 V1.1.2 (2020-06)31

• Unequal operator (production rule named unequal). A matching entity shall contain the target element and
meet any of the following conditions:

- The Query Term value, e.g. color!='red':

 Is neither identical nor equivalent to the target value (e.g. matches "black").

 Is not included in the target value, if the latter is an array (e.g. matches ["blue","black","green"],
but not ["blue","red","green"]).

- If the Query Term value is a list of values (production rule named ValueList), e.g. color!='black', 'red':

 The target value is neither identical nor equivalent to any of the list values (e.g. matches "blue").

 The target value does not include any of the list values, if the target value is an array (e.g. matches
["blue","yellow","green"], but not ["blue","red","green"]).

- If the Query Term value is a range (production rule named Range), e.g. temperature!=10..20.

- The target value is not in the interval between the minimum and the maximum (both included)
(e.g. matches 9).

- If the data type of the target value and the data type of the Query Term value are different, then they shall
be considered unequal.

• Greater than operator (production rule named greater). For an entity to match, it shall contain the target
element and the target value has to be strictly greater than the Query Term value:

- If there is no equality between the target value data type and the Query Term value data type then it shall
be considered as not matching.

• Less than operator (production rule named lower). For an entity to match, it shall contain the target element
and the target value shall be strictly less than the value:

- If there is no equality between the target value data type and the Query Term value data type then it shall
be considered as not matching.

• Greater or equal than (production rule named greaterEq). A matching entity shall meet any of the Greater
than or the Equal conditions for single values.

• Less or equal than (production rule named lowerEq). A matching entity shall meet any of the Less than or the
Equal conditions for single values.

• Match pattern (production rule named patternOp). A matching entity shall contain the target element and the
target value shall be in the L(R) of the regular pattern specified by the Query Term:

- If the target value data type is different than String then it shall be considered as not matching.

4.10 NGSI-LD Geo-query language
The NGSI-LD Geo-query language shall be supported by implementations. It is intended to define predicates which
allow testing whether a specific topological spatial relationship exists between a pair of geometries: a target geometry
and a reference geometry. The target geometry represents a geospatial Property of an Entity, typically, the location of
the Entity.

The following grammar defines the syntax for the geospatial relationships that shall be supported:

andOp = %x3B ; ;
equal = %x3D %x3D ; ==
georel = nearRel / withinRel / containsRel / overlapsRel / intersectsRel / equalsRel / disjointRel
nearRel = nearOp andOp distance equal PositiveNumber ; near;max(min)Distance==x (in meters)
distance = "maxDistance" / "minDistance"
nearOp = "near"
withinRel = "within"
containsRel = "contains"
intersectsRel = "intersects"
equalsRel = "equals"

ETSI

ETSI GS CIM 004 V1.1.2 (2020-06)32

disjointRel = "disjoint"
overlapsRel = "overlaps"

PositiveNumber shall be a non-zero positive number as mandated by the JSON Specification. Thus, it shall follow the
ABNF Grammar, production rule named Number, section 6 of [6], excluding the minus' symbol and excluding the
number 0.

Reference geometries shall be specified by:

• A geometry type (parameter name geometry) as defined by the GeoJSON specification ([8], section 1.4),
except GeometryCollection.

• A coordinates (parameter name coordinates) element which shall represent the coordinates of the reference
geometry as mandated by [8], section 3.1.1.

The GeoProperty to which the geo-query is to be applied can be specified by an extra parameter named geoproperty. If
no geoproperty is specified, the geo-query is applied to the default Property location (see clause 4.7.1).

EXAMPLE 1: georel=near;maxDistance==2000

geometry=Point

coordinates=[8,40]

geoproperty=observationSpace

EXAMPLE 2: georel=within

geometry=Polygon

coordinates= [[[100.0, 0.0], [101.0, 0.0], [101.0, 1.0], [100.0, 1.0], [100.0, 0.0]]]

geoproperty=location

EXAMPLE 3: Geo-query encoded as an HTTP Query String, please note that this is HTTP binding specific.

 ?type=Vehicle&georel=near;maxDistance==2000&geometry=Point&coordinates=[8,40]

The semantics of the different geospatial relationships defined above is as follows, and shall be supported by compliant
implementations:

• near statement (production rule named nearRel):

- maxDistance modifier. For an entity to match it has to be within the buffer geometric object (as defined
by [14]) given by the reference geometry, with distance (in meters) equal to the number conveyed
(production rule named PositiveNumber).

- minDistance modifier. For an entity to match it has to be disjoint with the buffer geometric object (as
defined by [14]) given by the reference geometry, with distance (in meters) equal to the number
conveyed (production rule named PositiveNumber).

• equals relationship (production rule named equalsRel). For an entity to match, the target geometry shall be
equal, as specified by [14], to the reference geometry.

• disjoint relationship (production rule named disjointRel). For an entity to match, the target geometry shall be
disjoint, as specified by [14], to the reference geometry.

• intersects relationship (production rule named intersectsRel). For an entity to match, the target geometry shall
intersect, as specified by [14], with the reference geometry.

• within relationship (production rule named withinRel). For an entity to match, the target geometry shall to be
within, as specified by [14], the reference geometry.

• contains relationship (production rule named containsRel). For an entity to match, the target geometry shall
contain, as specified by [14], the reference geometry.

ETSI

ETSI GS CIM 004 V1.1.2 (2020-06)33

• overlaps relationship (production rule named overlapsRel). For an entity to match, the target geometry shall
overlap, as specified by [14], the reference geometry.

When resolving geo-queries, Entities which do not convey the target GeoProperty of the query shall be considered as
non-matching.

4.11 NGSI-LD Temporal Query language
The NGSI-LD Temporal Query language shall be supported by implementations. It is intended to define predicates
which allow testing whether temporal properties of NGSI-LD Entities, Properties and Relationships, are within certain
temporal constraints. In particular it can be used to request historic Property values and Relationships that were valid
within the specified timeframe. In case only the latest Value is stored the temporal query simply acts as a filter for this
value.

The following grammar defines the syntax for the temporal query that shall be supported:

temprel = beforeRel / afterRel / betweenRel
beforeRel = "before"
afterRel = "after"
betweenRel = "between"

The points in time for comparison are defined as follows:

• A time element, which shall represent the comparison point for the before and after relation and the starting
point for the between relation. It shall be represented as DateTime (mandated by clause 4.6.3).

• An endtime element, which is only used for the between relation and shall represent the end point for
comparison. It shall be represented as DateTime (mandated by clause 4.6.3).

The Temporal Property to which the temporal query is to be applied can be specified by timeproperty. If no
timeproperty is specified, the temporal query is applied to the default property observedAt.

EXAMPLE 1: temprel=before

time=2017-12-13T14:20:00

EXAMPLE 2: temprel=between

time=2017-12-13T14:20:00

endtime==2017-12-13T14:40:00

timeproperty=modifiedAt

EXAMPLE 3: Temporal query encoded as HTTP Query String, please note that this is HTTP binding specific.

 ?type=Vehicle&temprel=between&time=2017-12-13T14:20:00&timeproperty=observedAt

The semantics of the different temporal relations defined above is as follows, and shall be supported by compliant
implementations:

• before relationship (production rule named 'beforeRel'). For a temporal property to match, the value of the
specified temporal property (or 'timestamp' as default) has to be before the time specified in 'time'.

• after relationship (production rule named 'afterRel'). For a temporal property to match, the value of the
specified temporal property (or 'timestamp' as default) has to be after the time specified in 'time'.

• between relationship (production rule named 'betweenRel'). For a temporal property to match, the value of the
specified temporal property (or 'timestamp' as default) has to be after the time specified in 'time' and before the
time specified in 'endtime'.

When resolving temporal queries, Entities which do not convey the target TemporalProperty of the query shall be
considered as non-matching.

ETSI

ETSI GS CIM 004 V1.1.2 (2020-06)34

5 API Operation Definition

5.1 Introduction
This clause defines data structures and operations of the NGSI-LD API. No specific binding is assumed. Clause 6 maps
these operations and data types to the HTTP REST binding.

NOTE: In UML diagrams dotted arrows denote a response to a request.

5.2 Data types

5.2.1 Introduction

Implementations shall support the data types defined by the clauses below. For each member defined by each data type
(including nested ones) a term shall be added to the Core @context, as mandated by clause 4.5.

5.2.2 Common members

The JSON-LD representation of NGSI-LD Entity, Property, Relationship, Context Source Registration and Subscription
can include the common members described by table 5.2.2-1.

Those members are read-only, and shall be automatically generated by NGSI-LD implementations. They shall not be
provided by Context Producers. In the event that they are provided (in update or create operations) NGSI-LD
implementations shall ignore them.

In query or retrieve operations involving the referred NGSI-LD elements, implementations (unless they are asked to be
omitted by the Context Consumer) shall generate them as part of their representation.

Table 5.2.2-1: Common members of NGSI-LD elements

Name Data type Restriction Cardinality Description
createdAt string DateTime (clause 4.6.3) 0..1 Entity creation timestamp. See clause 4.8
modifiedAt string DateTime (clause 4.6.3) 0..1 Entity last modification timestamp. See clause 4.8

5.2.3 @context

When encoding NGSI-LD Entities, Context Source Registrations, Subscriptions and Notifications, as pure JSON-LD
(MIME type "application/ld+json"), it shall be included a proper @context as a special member of the corresponding
JSON-LD Object. Table 5.2.3-1 gives a precise definition of this special member.

Table 5.2.3-1: JSON-LD @context tagged member

Name Data type Restriction Cardinality Description
@context URI, JSON Object, or JSON Array See [2], section 5.1. 0..1 JSON-LD @context

5.2.4 Entity

This type represents the data needed to define a NGSI-LD entity as mandated by clause 4.5.

The supported JSON members shall follow the requirements provided in table 5.2.4-1.

ETSI

ETSI GS CIM 004 V1.1.2 (2020-06)35

Table 5.2.4-1: NGSI-LD Entity data type definition

Name Data type Restriction Cardinality Description
id URI 1 Entity id
type string Entity Type Name 1 Entity Type
location GeoProperty See datatype definition on

clause 5.2.7
0..1 Default geospatial Property of an

entity. See clause 4.7
observationSpace GeoProperty 0..1 See clause 4.7
operationSpace GeoProperty 0..1 See clause 4.7
<Property Name> Property See datatype definition on

clause 5.2.5
0..N Property as mandated by

clause 4.5.1
<Relationship Name> Relationship See datatype definition on

clause 5.2.6
0..N Relationship as mandated by

clause 4.5.2

5.2.5 Property

This type represents the data needed to define a Property as mandated by clause 4.5.1.

The supported JSON members shall follow the requirements provided in table 5.2.5-1.

Table 5.2.5-1: NGSI-LD Property data type definition

Name Data type Restriction Cardinality Description
type string It shall be equal to

"Property"
1 Node type

value Any JSON value
as defined by [6]

See NGSI-LD Value
definition at 3.1

1 Property Value

observedAt string DateTime (clause 4.6.3) 0..1 Timestamp. See clause 4.8
unitCode string As mandated by [15] 0..1 Property Value's unit code
<Property Name> Property 0..N Properties of Property
<Relationship Name> Relationship See datatype definition on

clause 5.2.6
0..N Relationships of Property

5.2.6 Relationship

This type represents the data needed to define a Relationship as mandated by clause 4.5.2.

The supported JSON members shall follow the requirements provided in table 5.2.6-1.

Table 5.2.6-1: NGSI-LD Relationship data type definition

Name Data type Restriction Cardinality Description
type string It shall be equal to "Relationship" 1 Node type
object URI 1 Relationship's target object
observedAt string DateTime (clause 4.6.3) 0..1 Timestamp. See clause 4.8
<Property Name> Property See datatype definition on

clause 5.2.5
0..N Properties of the

Relationship
<Relationship Name> Relationship 0..N Relationships of the

Relationship

5.2.7 GeoProperty

This type represents the data needed to define a GeoProperty.

The supported JSON members shall follow the requirements provided in table 5.2.7-1.

ETSI

ETSI GS CIM 004 V1.1.2 (2020-06)36

Table 5.2.7-1: NGSI-LD GeoProperty data type definition

Name Data type Restriction Cardinality Description
type string It shall be equal to

"GeoProperty"
1 Node type

value JSON Object As mandated by clause 4.7 1 Geolocation encoded as
GeoJSON [8]

observedAt string DateTime (clause 4.6.3) 0..1 Timestamp. See clause 4.8
<Property Name> Property 0..N Properties of Property
<Relationship Name> Relationship See datatype definition on

clause 5.2.6
0..N Relationships of Property

5.2.8 EntityInfo

This type represents what Entities, Entity Types or group of Entity ids (as a regular expression pattern mandated by
[11]) can be provided (by Context Sources) or Subscribed to by Context Consumers.

The JSON members shall follow the indications provided in table 5.2.8-1. At least one of the JSON members below
shall be present.

None of the members described admit a null value, except when they are used in the context of an update operation (see
clause 5.5.8) and implementations shall raise an error of type BadRequestData if a null value is encountered.

Table 5.2.8-1: EntityInfo data type definition

Name Data type Restrictions Cardinality Description
id string valid URI 0..1 Entity identifier
idPattern string Regular expression as per [11] 0..1 A regular expression which denotes a

pattern that shall be matched by the
provided or subscribed Entities

type string Entity Type Name as short-hand
string. See clause 4.6.2

1 Entity Type Name

5.2.9 CsourceRegistration

This type represents the data needed to register a new Context Source.

The supported JSON members shall follow the indications provided in table 5.2.9-1.

None of the members described permit a null value, except when they are used in the context of an update operation
(see clause 5.5.8) and implementations shall raise an error of type BadRequestData if a null value is encountered.

ETSI

ETSI GS CIM 004 V1.1.2 (2020-06)37

Table 5.2.9-1: CsourceRegistration data type definition

Name Data type Restriction Cardinality Description
id URI At creation time, If it is not

provided, it will be assigned
during registration process
and returned to client.
It cannot be later modified
in update operations

0..1 Unique registration identifier.
(JSON-LD @id).
There may be multiple registrations
per Context Source, i.e. the id is
unique per registration

type string "ContextSource
Registration"

1 JSON-LD @type
Use reserved type for identifying
Context Source Registration

name string Non-empty string 0..1 A name given to this Context Source
Registration

description string Non-empty string 0..1 A description of this Context Source
Registration

information RegistrationInfo[] See data type definition in
clause 5.2.10

1 Describes the Entities, Properties
and Relationships for which the
Context Source may be able to
provide information

timestamp TimeInterval[] See data type definition in
clause 5.2.11

0..1 Time intervals for which the Context
Source may be able to provide
information. If not provided the
assumption is that only the latest
available values can be provided

location GeoJSON Geometry
as mandated by 4.7

 0..1 Location for which the Context
Source may be able to provide
information

expires string DateTime (clause 4.6.3) 0..1 Provides an expiration date. When
passed the Context Source
Registration will become invalid and
the Context Source might no longer
be available

endpoint URI It shall be a
dereferenceable URI

1 Endpoint expressed as
dereferenceable URI through which
the Context Source exposes its
NGSI-LD interface

5.2.10 RegistrationInfo

The supported JSON members shall follow the requirements provided in table 5.2.10-1.

Table 5.2.10-1: RegistrationInfo data type definition

Name Data type Restrictions Cardinality Description
entities EntityInfo [] See data type definition on

clause 5.2.8
1 Describes the entities for which the

CSource may be able to provide information
properties string [] Property Name as short-

hand string
0..1 Describes the Properties that the CSource

may be able to provide for the Entities
described in the entities member

relationships string [] Relationship
Name as short-hand string

0..1 Describes the Relationships that the
CSource may be able to provide for the
Entities described in the entities member

5.2.11 TimeInterval

The supported JSON members shall follow the requirements provided in table 5.2.11-1.

ETSI

ETSI GS CIM 004 V1.1.2 (2020-06)38

Table 5.2.11-1: TimeInterval data type definition

Name Data type Restrictions Cardinality Description
start string DateTime (clause 4.6.3) 1 Describes the start of the time interval.
end string DateTime (clause 4.6.3) 0..1 Describes the end of the time interval. If not present

the interval is open.

5.2.12 Subscription

This datatype represents a Context Subscription.

The supported JSON members shall follow the requirements provided in table 5.2.12-1.

None of the members described permit a null value, except when they are used in the context of an update operation
(see clause 5.5.8) and implementations shall raise an error of type BadRequestData if a null value is encountered.

Table 5.2.12-1: Subscription data type definition

Name Data type Restrictions Cardinality Description
id URI At creation time, If it is

not provided, it will be
assigned during
subscription process and
returned to client.
It cannot be later
modified in update
operations.

0..1 Subscription identifier (JSON-LD @id)

type string It shall be equal to
"Subscription"

1 JSON-LD @type

name string 0..1 A (short) name given to this
Subscription

description string 0..1 Subscription description
entities EntityInfo[] See data type definition

on clause 5.2.8
1 Entities subscribed

watchedAttributes string[] Attribute Name as short-
hand string.
if timeInterval is present
it shall not appear (0
cardinality)

0..1 Watched Attributes (Properties or
Relationships). If not defined it means
any Attribute

timeInterval Number Greater than 0
if watchedAttributes is
present it shall not
appear (0 cardinality)

0..1 Indicates that a notification shall be
delivered periodically regardless of
attribute changes. Actually, when the
time interval (in seconds) specified in
this value field is reached

q string A valid query string as
per clause 4.9

0..1 Query that shall be met by subscribed
entities in order to trigger the
notification

geoQ GeoQuery See data type definition
on clause 5.2.13

0..1 Geo-Query that shall be met by
subscribed entities in order to trigger
the notification

notification NotificationPara
ms

See data type definition
on clause 5.2.14

0..1 Notification details

expires string DateTime (see
clause 4.6.3)

0..1 Expiration date for the subscription

status string Allowed values:
"active"
"inactive"
"failed"
"expired"

0..1 Provided by the system when
querying the details of a subscription

throttling Number Greater than 0 0..1 Minimal period of time in seconds
which shall elapse between two
consecutive notifications

ETSI

ETSI GS CIM 004 V1.1.2 (2020-06)39

5.2.13 GeoQuery

This datatype represents a geo-query used for Subscriptions.

The supported JSON members shall follow the requirements provided in table 5.2.13-1.

Table 5.2.13-1: GeoQuery data type definition

Name Data type Restrictions Cardinality Description
geometry string A valid GeoJSON [8] geometry

type excepting
GeometryCollection

1

Type of the reference geometry

coordinates JSON Array or string A JSON Array coherent with
the geometry type as per [8]

1 Coordinates of the reference
geometry. For the sake of
JSON-LD compatibility It can be
encoded as a string as described
in clause 4.7.1

georel string A valid geo-relationship as
defined by clause 4.10

1 Geo-relationship (near, within,
etc.)

5.2.14 NotificationParams

5.2.14.1 NotificationParams data type definition

This datatype represents the parameters that allow to convey the details of a notification.

The supported JSON members shall follow the requirements provided in table 5.2.14.1-1.

Table 5.2.14.1-1: NotificationParams data type definition

Name Data type Restrictions Cardinality Description
attributes string[] Attribute Name as short-hand string. 0..1

Entity Attribute Names (Properties
or Relationships) to be included in
the notification payload. If
undefined it will mean all Attributes

format string It shall be one of:
"keyValues"
"normalized"

0..1 Conveys the representation format
of the entities delivered at
notification time. By default, it will
be in normalized format

endpoint EndPoint See data type definition on clause 5.2.15 1 Notification end point details

5.2.14.2 Additional members

The members (defined by table 5.2.14.2-1) of the NotificationParams data structure are also defined. They are read-
only, and shall be automatically generated by NGSI-LD implementations. They shall not be provided by Context
Subscribers. In the event that they are provided (in update or create operations) NGSI-LD implementations shall ignore
them.

In query or retrieve operations involving Subscriptions, implementations (unless they are asked to be omitted by the
Context Subscriber or Consumer) shall generate them as part of their representation.

ETSI

ETSI GS CIM 004 V1.1.2 (2020-06)40

Table 5.2.14.2-1: Additional members of the NotificationParams data structure

Name Data type Restrictions Cardinality Description
timesSent Number Greater than 0 0..1 Number of times that the notification was sent.

Provided by the system when querying the
details of a subscription

lastNotification string DateTime (clause 4.6.3) 0..1 Timestamp corresponding to the instant when
the last notification was sent. Provided by the
system when querying the details of a
subscription

lastFailure string DateTime (clause 4.6.3) 0..1 Timestamp corresponding to the instant when
the last notification resulting in failure (for
instance, in the HTTP binding, an HTTP
response code different than 200) was sent.
Provided by the system when querying the
details of a subscription

lastSuccess string DateTime (clause 4.6.3) 0..1 Timestamp corresponding to the instant when
the last successful (200 OK response)
notification was sent. Provided by the system
when querying the details of a subscription

5.2.15 EndPoint

This datatype represents the parameters that are required in order to define an endpoint for notifications.

The supported JSON members shall follow the indications provided in table 5.2.15-1.

Table 5.2.15-1: EndPoint data type definition

Name Data type Restrictions Cardinality Description
uri URI Dereferenceable URI 1 URI which conveys the endpoint which will receive

the notification
accept string MIME type. It shall be one of:

"application/json"
"application/ld+json"

0..1 Intended to convey the MIME type of the
notification payload (JSON or JSON-LD)

5.3 Notification data types

5.3.1 Notification

This datatype represents the parameters that allow building a notification to be sent to a subscriber. How to build this
notification is detailed in clause 5.8.6.

The supported JSON members shall follow the indications provided in table 5.3.1-1.

Table 5.3.1-1: Notification data type definition

Name Data type Restrictions Cardinality Description
id URI 1 Notification identifier (JSON-LD

@id). It shall be automatically
generated by the implementation

type String It shall be equal to
"Notification"

1 JSON-LD @type

subscriptionId URI 1 Identifier of the subscription that
originated the notification

notifiedAt string DateTime (clause 4.6.3) 1 Timestamp corresponding to the
instant when the notification was
generated by the system

data NGSI-LD Entity[] 1 The content of the notification as
NGSI-LD Entities. See clause 5.2.4

ETSI

ETSI GS CIM 004 V1.1.2 (2020-06)41

5.3.2 CsourceNotification

This datatype represents the parameters that allow building a Context Source Notification to be sent to a subscriber.
How to build this notification is detailed in clause 5.11.7.

The supported JSON members shall follow the indications provided in table 5.3.2-1.

Table 5.3.2-1: CsourceNotification data type definition

5.3.3 TriggerReasonEnumeration

The enumeration can take one of the following values:

• "newlyMatching" - describes the case that the notified Context Source Registration(s) newly match(es) the
identified subscription. This value is used in the first notification and whenever a new Context Source
Registration matching the Subscription has been registered, or an existing Context Source Registration that did
not match before has been updated in such a way that it matches now.

• "updated" - describes the case that the notified Context Source Registration that was part of a previous
notification has been updated, but still matches the Subscription.

• "noLongerMatching" - describes the case that the notified Context Source Registration that was part of a
previous notification no longer matches the Subscription, i.e. as a result of an update or because it was deleted.

5.4 NGSI-LD Fragments
When updating NGSI-LD elements (Entities, Context Source Registrations or Context Subscriptions) it is necessary to
have a means of describing a set of modifications to their content.

An NGSI-LD Fragment is a JSON merge patch document [16] which describes changes to be made to a target JSON-
LD document using a syntax that closely mimics the document being modified.

An NGSI-LD Fragment is a JSON-LD Object which shall include the following members:

• id (it could be omitted for certain bindings if it can be determined from the operation signature). It shall be
equal to the id of the target (mutated) NGSI-LD element.

• type (it could be omitted for certain bindings if it can be determined from the operation signature). It shall be
equal to the Type Name of the target NGSI-LD element.

• A member (following the same data representation and nesting structure) for each new member to be added to
the target NGSI-LD element.

Name Data type Restrictions Cardinality Description
id URI 1 Csource notification identifier

(JSON-LD @id)
type string It shall be equal to

"ContextSource Notification"
1 JSON-LD @type

subscriptionId URI 1 Identifier of the subscription that
originated the notification

notifiedAt string DateTime (see clause 4.6.3) 1 Timestamp corresponding to the
instant when the notification was
generated by the system

data Csource
Registration[]

 1 The content of the notification as
NGSI-LD entities. See clause 5.2.4

triggerReason string TriggerReasonEnumeration (see
clause 5.3.3)

1 Indicates whether the Csources in
the CsourceRegistration(s) in data
are newly matching (initial
notification or creation), have been
updated (but still match) or do not
match any longer

ETSI

ETSI GS CIM 004 V1.1.2 (2020-06)42

• A member (following the same data representation and nesting structure) for each new member to be modified
in the target NGSI-LD element, which value shall correspond to the new member value to be given.

• A member (following the same data representation and nesting structure) with value equal to null for each
member to be removed from the target NGSI-LD element

EXAMPLE: The following NGSI-LD Fragment allows to modify a Context Subscription by changing its
endpoint's URI:

{
 "id": "urn:ngsi-ld:Subscription:MySubscription",
 "type": "Subscription",
 "endpoint": {
 "uri": "http://example.org/newNotificationEndPoint"
 }
}

5.5 Common behaviours

5.5.1 Introduction

This clause defines common behaviours for the API operations.

When comparing URIs, implementations shall follow the recommendations of [5], section 6.

5.5.2 Error types

Table 5.5.2-1 details a list of error types defined by NGSI-LD. The particular conditions under which error type shall be
raised are defined when describing each operation supported by the API.

Table 5.5.2-1: Error types in NGSI-LD

Error Type Description
http://uri.etsi.org/ngsi-ld/errors/InvalidRequest The request associated to the operation is syntactically

invalid or includes wrong content
http://uri.etsi.org/ngsi-ld/errors/BadRequestData The request includes input data which does not meet the

requirements of the operation
http://uri.etsi.org/ngsi-ld/errors/AlreadyExists The referred element already exists
http://uri.etsi.org/ngsi-ld/errors/OperationNotSupported The operation is not supported
http://uri.etsi.org/ngsi-ld/errors/ResourceNotFound The referred resource has not been found
http://uri.etsi.org/ngsi-ld/errors/InternalError There has been an error during the operation execution

5.5.3 Error payloads

When reporting errors back to clients, NGSI-LD implementations shall generate a JSON object in accordance with [10],
section 3.1, including, at least the following terms:

• type: Error type as per clause 5.4.1.

• title: Error title which shall be a short string summarizing the error.

• detail: A detailed message that should convey enough information about the error.

Even though [10] defines a specific MIME type for error payloads, NGSI-LD implementations shall use the standard
JSON MIME type ("application/json") when reporting errors, so that old clients or existing tools are not broken.

ETSI

ETSI GS CIM 004 V1.1.2 (2020-06)43

5.5.4 JSON-LD validation

All the operations that take a JSON-LD document as input shall process such JSON-LD document as follows:

• If the input payload is not a valid JSON document then an error of type InvalidRequest shall be raised.

• If the data included by the JSON-LD document is not syntactically correct according to the @context then an
error of type BadRequestData shall be raised. For the avoidance of doubt, this includes validation of member
values in accordance with their data type, for instance DateTime, and validation of each Relationship's target
object which shall be a syntactically valid URI.

5.5.5 Default @context assignment

If an input JSON document provided by an API client, does not include a @context and there is no other mechanism
available to determine it, then the implementation shall assign a default @context to such JSON document. A default
@context shall include all the terms defined by the Core NGSI-LD @context as mandated by clause 4.4.

5.5.6 Operation execution

When executing an operation if an unexpected error happens and the operation cannot be completed, implementations
shall raise an error of type InternalError. This includes as well situations such as database timeouts, etc.

If the NGSI-LD end point is not capable of executing the requested operation an error of type OperationNotSupported
shall be raised. This may happen in a distributed architecture where a Context Broker might not be able to store Entities
(only to forward queries to Context Sources), and as a result certain operations such as "Create Entity" might not be
supported.

5.5.7 Term to URI expansion

NGSI-LD API operations allow clients to use short-hand strings as non-qualified names, particularly for Property,
Relationship or Type Names. For instance, an API client can refer to the term "Vehicle" as a non-qualified type name.
When executing API operations, NGSI-LD systems shall expand terms to URIs, in order to obtain fully qualified
names.

The term to URI expansion shall be performed using a @context as described by the JSON-LD specification [2],
section 5.1. In the absence of a @context, the term expansion shall be performed using a default @context
(clause 5.5.5).

If a term cannot be expanded as per the supplied @context then it should be expanded using a default JSON-LD
@context.

EXAMPLE: An entity of type "Vehicle" bound to a certain @context, C, will match a query by "Vehicle" type
if and only if the supplied query @context, Q, maps the term "Vehicle" to the same URI as C.

5.5.8 JSON-LD Merge Patch Behaviour

When updating NGSI-LD elements (Entities, Context Source Registrations or Context Subscriptions) using NGSI-LD
Fragments, implementations shall determine the exact set of changes being requested by comparing the content of the
provided Fragment (patch) against the current content (a JSON-LD object) of the target element.

Implementations shall perform an algorithm equivalent to the one described below (slightly adapted from [16], in order
to observe the name to URI expansion rules):

• For each member of the Fragment perform the term to URI expansion.

• If the provided Fragment (merge patch) contains members that do not appear within the target (their URIs do
not match), those members are added to the target.

• For each member of the Fragment, which value is different than null, contained by the target, the target
member value is replaced by value given in the Fragment.

• For each member of the Fragment, which value is null, contained by the target, the target member is removed.

ETSI

ETSI GS CIM 004 V1.1.2 (2020-06)44

5.6 Context Information Provision

5.6.1 Create Entity

5.6.1.1 Description

This operation allows creating a new NGSI-LD Entity.

5.6.1.2 Use case diagram

A Context Producer can create an Entity within an NGSI-LD system as shown in figure 5.6.1.2-1.

Figure 5.6.1.2-1: Create entity use case

5.6.1.3 Input data

A JSON-LD document representing a NGSI-LD Entity as mandated by clause 5.2.4.

5.6.1.4 Behaviour

Implementations shall exhibit the following behaviour:

• Execute the behaviour defined in clause 5.5.4 on JSON-LD validation.

• If the NGSI-LD end point already knows about this Entity, because there is an existing entity whose id (URI)
is equivalent an error of type AlreadyExists shall be raised.

• Otherwise, implementations shall retain the provided entity under the corresponding entity collection.

5.6.1.5 Output data

None.

5.6.2 Update Entity Attributes

5.6.2.1 Description

This operation allows modifying an existing NGSI-LD Entity by updating already existing Attributes (Properties or
Relationships).

ETSI

ETSI GS CIM 004 V1.1.2 (2020-06)45

5.6.2.2 Use case diagram

A Context Producer can update Entity Attributes within an NGSI-LD system as shown in figure 5.6.2.2-1.

Figure 5.6.2.2-1: Update entity Attributes use case

5.6.2.3 Input data

• A URI representing the id of the Entity to be updated (target Entity).

• A JSON-LD document representing a NGSI-LD Entity Fragment.

5.6.2.4 Behaviour

• If the Entity Id is not present or it is not a valid URI then an error of type BadRequestData shall be raised.

• If the NGSI-LD end point does not know about the target Entity, because there is no existing Entity whose id
(URI) is equivalent to the target entity, an error of type ResourceNotFound shall be raised.

• Execute the behaviour defined on clause 5.5.4 on JSON-LD validation.

• For each of the Attributes included by the Fragment, if the target Entity includes a matching one (taking into
account term expansion rules as mandated by clause 5.5.7) then replace it by the one included by the
Fragment. Otherwise ignore it.

5.6.2.5 Output data

• A status code indicating whether all the new Attributes were updated or only some of them.

• List of Attributes (Properties or Relationships) actually updated.

5.6.3 Append Entity Attributes

5.6.3.1 Description

This operation allows modifying a NGSI-LD Entity by adding new attributes (Properties or Relationships).

5.6.3.2 Use case diagram

A Context Producer can append new Attributes to an existing Entity within an NGSI-LD system as shown in
figure 5.6.3.2-1.

ETSI

ETSI GS CIM 004 V1.1.2 (2020-06)46

Figure 5.6.3.2-1: Append Entity Attributes use case

5.6.3.3 Input data

• A URI representing the id of the E to be modified (target Entity).

• A JSON-LD document representing a NGSI-LD Entity Fragment.

• An optional flag indicating whether the append operation should overwrite or not existing Attributes. By
default, Attributes will be overwritten.

5.6.3.4 Behaviour

The following behaviour shall be exhibited by compliant implementations:

• If the Entity Id is not present or it is not a valid URI then an error of type BadRequestData shall be raised.

• If the NGSI-LD end point does not know about this Entity, because there is no an existing Entity which id
(URI) is equivalent to the one passed as parameter, an error of type ResourceNotFound shall be raised.

• The behaviour defined on clause 5.5.4 on JSON-LD validation.

• For each Attribute (Property or Relationship) included by the Entity Fragment at root level:

- If the target Entity does not include a matching Attribute (taking into account term expansion rules as
mandated by clause 5.5.7) then such Attribute shall be appended to the target Entity.

- If the target Entity already includes a matching Attribute (taking into account term expansion rules as
mandated by clause 5.5.7):

 If overwrite is allowed then the existing Attribute in the target Entity shall be replaced by the new
one supplied.

 If overwrite is not allowed the existing Attribute in the target Entity shall be left untouched.

5.6.3.5 Output data

• A status code indicating whether all the new Attributes were appended or only some of them.

• List of Attributes (Properties and/or Relationships) actually appended.

ETSI

ETSI GS CIM 004 V1.1.2 (2020-06)47

5.6.4 Partial Attribute update

5.6.4.1 Description

This operation allows performing a partial update on a NGSI-LD Entity's Attribute (Property or Relationship).
A partial update only changes the elements provided in an Entity Fragment, leaving the rest as they are.

5.6.4.2 Use case diagram

A Context Producer can carry out a partial Attribute update of an Entity within an NGSI-LD System as shown in
figure 5.6.4.2-1.

Figure 5.6.4.2-1: Partial Attribute update use case

5.6.4.3 Input data

• Entity Id (URI) of the concerned Entity, the target Entity.

• Target Attribute (Property or Relationship) to be modified, identified by a name.

• A JSON-LD document representing a NGSI-LD Entity Fragment.

5.6.4.4 Behaviour

• If the target Entity id is not a valid URI or it is not present, then an error of type BadRequestData shall be
raised.

• If the target Attribute Name is not valid or it is not present, then an error of type BadRequestData shall be
raised.

• If the NGSI-LD end point does not know about the target Entity, because there is no an existing Entity which
id (URI) is equivalent, then an error of type ResourceNotFound shall be raised.

• Apply term expansion as mandated by clause 5.5.7, so that the fully qualified name (URI) associated to the
target Attribute is properly obtained.

• If the target Entity does not contain the target Attribute then an error of type ResourceNotFound shall be
raised.

• Perform a partial update on the target Attribute following the algorithm mandated by clause 5.5.8.

ETSI

ETSI GS CIM 004 V1.1.2 (2020-06)48

5.6.4.5 Output data

None.

5.6.5 Delete Entity Attribute

5.6.5.1 Description

This operation allows deleting a NGSI-LD Entity's Attribute (Property or Relationship). The Attribute itself and all its
children elements shall be deleted.

5.6.5.2 Use case diagram

A Context Producer can delete a specific Entity Attribute within an NGSI-LD system as shown in figure 5.6.5.2-1.

Figure 5.6.5.2-1: Delete Entity Attribute use case

5.6.5.3 Input data

• Entity id (URI) of the concerned Entity, the target Entity.

• Target Attribute (Property or Relationship) to be deleted, identified by a Name.

• An optional JSON-LD @context.

5.6.5.4 Behaviour

• If the target Entity id is not a valid URI or it is not present, then an error of type "BadRequestData" shall be
raised.

• If the target Attribute name is not a valid Name or it is not present, then an error of type "BadRequestData"
shall be raised.

• If the NGSI-LD end point does not know about the target Entity, because there is no existing Entity whose id
(URI) is equivalent, then an error of type "ResourceNotFound" shall be raised.

• Apply term expansion as mandated by clause 5.4.6 so that the fully qualified name (URI) associated to the
target Attribute is properly obtained.

• If the target Entity does not contain the target Attribute then an error of type "ResourceNotFound" shall be
raised.

• Remove the target Attribute from the target Entity.

ETSI

ETSI GS CIM 004 V1.1.2 (2020-06)49

5.6.5.5 Output data

None.

5.6.6 Delete Entity

5.6.6.1 Description

This operation allows deleting a NGSI-LD Entity.

5.6.6.2 Use case diagram

A Context Producer can completely delete an Entity within an NGSI-LD system as shown in figure 5.6.6.2-1.

Figure 5.6.6.2-1: Delete Entity use case

5.6.6.3 Input data

• Entity Id (URI) of the Entity to be deleted, the target Entity.

5.6.6.4 Behaviour

• If the target Entity id is not present or it is not a valid URI, then an error of type "BadRequestData" shall be
raised.

• If the NGSI-LD end point does not know about the target Entity, then an error of type "ResourceNotFound"
shall be raised.

• Otherwise the Entity shall be removed from the Entity collection.

5.6.6.5 Output data

None.

ETSI

ETSI GS CIM 004 V1.1.2 (2020-06)50

5.7 Context Information Consumption

5.7.1 Retrieve Entity

5.7.1.1 Description

This operation allows retrieving a NGSI-LD Entity.

5.7.1.2 Use case diagram

A context consumer can retrieve a specific Entity from an NGSI-LD system as shown in figure 5.7.1.2-1.

Figure 5.7.1.2-1: Retrieve Entity use case

5.7.1.3 Input data

• Entity Id (URI) of the Entity to be retrieved (target Entity).

• List of Entity Attributes (Properties or Relationships) to be retrieved (as names).

• An optional JSON-LD context.

5.7.1.4 Behaviour

• If the Entity Id is not present or it is not a valid URI, then an error of type "BadRequestData" shall be raised.

• If the NGSI-LD end point does not know about the target Entity, because there is no existing Entity whose id
(URI) is equivalent, then an error of type "ResourceNotFound" shall be raised.

• Term to URI expansion of Attribute names shall be observed as mandated by clause 5.5.7.

• Otherwise return a JSON-LD object representing the Entity as mandated by clause 5.2.4 and containing only
the Attributes requested (if present).

5.7.1.5 Output data

A JSON-LD object representing the target Entity as mandated by clause 5.2.4.

ETSI

ETSI GS CIM 004 V1.1.2 (2020-06)51

5.7.2 Query Entities

5.7.2.1 Description

This operation allows querying a NGSI-LD system.

5.7.2.2 Use case diagram

A context consumer can retrieve a set of entities which matches a specific query from an NGSI-LD system as shown in
figure 5.7.2.2-1.

Figure 5.7.2.2-1: Query entities use case

5.7.2.3 Input data

• A reference to a JSON-LD @context (optional).

• A list (one or more) of Entity types of the matching entities (mandatory).

• A list (one or more) of Entity identifiers (optional).

• A list (one or more) of Attribute names (optional).

• An id pattern as a regular expression (optional).

• An NGSI-LD query (optional) as mandated by clause 4.9.

• An NGSI-LD geoquery (optional) as mandated by clause 4.10.

• An NGSI-LD temporal query (optional) as mandated by clause 4.11.

5.7.2.4 Behaviour

• If an Entity type or Entity id is not provided then an error of type "BadRequestData" shall be raised.

• If the list of Entity identifiers includes a URI which it is not valid, or the query or geo-query are not
syntactically valid (as per the referred clauses 4.9 and 4.10) an error of type "BadRequestData" shall be raised.

• Term to URI expansion of type and Attribute names shall be observed mandated by clause 5.5.7.

ETSI

ETSI GS CIM 004 V1.1.2 (2020-06)52

• Otherwise, implementations shall run a query that shall return all the entities that meet the following
conditions at the same time:

- type matches the expanded type(s);

- id is equivalent to any of the id(s) passed as parameter;

- id matches the id pattern passed as parameter;

- if present, the matching conditions specified by the query are met (as mandated by clause 4.9);

- if present, the geospatial restrictions imposed by the geoquery are met (as mandated by clause 4.10);

- if present, the temporal restrictions imposed by the temporal query are met (as mandated by clause 4.11).

5.7.2.5 Output data

A JSON-LD array representing the matching entities as defined by clause 5.2.4. For each matching Entity only the
Attributes specified by the Attribute list parameter shall be included. If such parameter is not present, then all Attributes
shall be included.

5.8 Context Information Subscription

5.8.1 Create Subscription

5.8.1.1 Description

This operation allows creating a new subscription.

5.8.1.2 Use case diagram

A context subscriber can create a subscription to receive context updates within an NGSI-LD system as shown in
figure 5.8.1.2-1.

Figure 5.8.1.2-1: Create subscription use case

5.8.1.3 Input data

• A data structure (represented in JSON-LD) conforming to the Subscription data type as mandated by
clause 5.2.12.

ETSI

ETSI GS CIM 004 V1.1.2 (2020-06)53

5.8.1.4 Behaviour

• If the data types, cardinalities and restrictions expressed by clause 5.2.12 are not met, then an error of type
BadRequestData shall be raised.

• If the NGSI-LD end point already knows about this subscription, because there is an existing subscription
whose id (URI) is equivalent, an error of type AlreadyExists shall be raised.

• If the subscription document does not include a subscription identifier, a new identifier (URI) shall be
automatically generated by the implementation.

• Then, implementations shall add a new subscription to the subscription collection. The parameters of the
created subscription shall be configured as follows:

- The subscription expiration date shall be equal to the value of the expires member. If the expiration
timestamp provided represents a moment before the current date and time, then an error of type
BadRequestData shall be raised. If there is no expires member the subscription shall be considered as
perpetual.

- If the subscription is not expired and no status is provided then the initial status of the subscription shall
be set to "active".

- The subscribed entities shall be those matching the conditions expressed under the EntityInfo collection,
clause 5.2.8.

- Watched Attributes shall be those Attributes (subject to term to URI expansion) pertaining to the
subscribed entities and conveyed through the "attributes" member. The watched Attributes are those that
trigger a new notification when they are changed. A non-present watchedAttributes member or a
watchedAttributes member of length 0 means that all Attributes shall be watched.

- If the document does not include the "status" member, the initial status of the subscription will be
"active", provided it has not expired yet.

• If the subscription defines a "timeInterval" member, a notification shall be sent periodically, when the time
interval (in seconds) specified in such value field is reached, regardless of Attribute changes.

• If "timeInterval" is not defined, whenever there is a change in the watched Attribute nodes (Properties or
Relationships) of the concerned Entities, implementations shall post a new notification as per the rules defined
by clause 5.8.6.

5.8.1.5 Output data

• One subscription identifier (id) of type string, representing a URI. Implementations shall ensure that
subscription identifiers are unique within a NGSI-LD system.

5.8.2 Update Subscription

5.8.2.1 Description

This operation allows updating an existing subscription.

5.8.2.2 Use case diagram

A context subscriber can update an existing subscription within an NGSI-LD system as shown in figure 5.8.2.2-1.

ETSI

ETSI GS CIM 004 V1.1.2 (2020-06)54

Figure 5.8.2.2-1: Update subscription use case

5.8.2.3 Input data

• Subscription identifier (URI), the target subscription.

• A JSON-LD document representing a Subscription Fragment.

5.8.2.4 Behaviour

• If the Subscription id is not present or it is not a valid URI, then an error of type BadRequestData shall be
raised.

• If the NGSI-LD System does not know about the target Subscription, because there is no existing Subscription
whose id (URI) is equivalent, an error of type ResourceNotFound shall be raised.

• Execute the behaviour defined on clause 5.5.4 on JSON-LD validation.

• If the data types and restrictions expressed by clause 5.2.12 are not met by the Subscription Fragment, then an
error of type BadRequestData shall be raised.

• Term to URI expansion of Attribute names shall be observed as mandated by clause 5.5.7.

• Then, implementations shall modify the target Subscription as mandated by clause 5.5.8.

5.8.2.5 Output data

None.

5.8.3 Retrieve Subscription

5.8.3.1 Description

This operation allows retrieving an existing subscription.

5.8.3.2 Use case diagram

A Context Subscriber can retrieve a specific subscription from an NGSI-LD system as shown in figure 5.8.3.2-1.

ETSI

ETSI GS CIM 004 V1.1.2 (2020-06)55

Figure 5.8.3.2-1: Retrieve subscription use case

5.8.3.3 Input data

• Id (URI) of the subscription to be retrieved (target subscription).

5.8.3.4 Behaviour

• If the subscription Id is not present or it is not a valid URI, then an error of type "BadRequestData" shall be
raised.

• If the identifier provided does not correspond to any existing subscription in the system then an error of type
"ResourceNotFound" shall be raised.

• Otherwise implementations shall query the subscription collection and obtain the subscription data to be
returned to the caller.

5.8.3.5 Output data

A JSON-LD object representing the subscription details as mandated by clause 5.2.12.

5.8.4 Query Subscriptions

5.8.4.1 Description

NOTE: This functionality will be reviewed in the next release, as it is currently specified in its most simple
fashion.

This operation allows querying existing Subscriptions.

5.8.4.2 Use case diagram

A Context Consumer can query the existent Subscriptions from an NGSI-LD system as shown in figure 5.8.4.2-1.

ETSI

ETSI GS CIM 004 V1.1.2 (2020-06)56

Figure 5.8.4.2-1: Query subscriptions use case

5.8.4.3 Input data

None.

5.8.4.4 Behaviour

• The NGSI-LD system shall list all the existing subscriptions up to the limit specified as input data. If no limit
is specified the number of subscriptions retrieved may depend on the implementation.

5.8.4.5 Output data

A list (represented as a JSON array) of JSON-LD objects each one representing subscription details as mandated by
clause 5.2.12.

5.8.5 Delete Subscription

5.8.5.1 Description

This operation allows deleting an existing subscription.

5.8.5.2 Use case diagram

A context subscriber can delete a subscription within an NGSI-LD system as shown in figure 5.8.5.2-1.

ETSI

ETSI GS CIM 004 V1.1.2 (2020-06)57

Figure 5.8.5.2-1: Delete subscription use case

5.8.5.3 Input data

• A subscription identifier (URI).

5.8.5.4 Behaviour

• If the subscription Id is not present or it is not a valid URI, then an error of type "BadRequestData" shall be
raised.

• If the subscription id provided does not correspond to any existing subscription in the system then an error of
type "ResourceNotFound" shall be raised.

• Otherwise implementations shall delete from the subscriptions collection the concerned subscription and no
longer perform notifications concerning such subscription.

5.8.5.5 Output data

None.

5.8.6 Notification behaviour

A notification is a message that allows a subscriber to be aware of the changes in subscribed entities. Implementations
shall exhibit the following behaviour:

• Notifications shall only be sent if and only if the status of the corresponding subscription is different than
"inactive" or "expired".

• If a subscription defines a "timeInterval" member, a notification shall be sent periodically, when the time
interval (in seconds) specified in such value field is reached, regardless of Attribute changes. The notification
message shall include all the subscribed entities that match the query and geoquery conditions. If query or
geoquery are not defined then all subscribed entities shall be included.

• If a subscription does not define a "timeInterval" term, the notification shall be sent whenever there is a change
in the watched Attributes. An Attribute is considered to change when any of the members (including children)
in its corresponding JSON-LD node is updated with a value different than the existing one. The notification
message shall include all the subscribed entities that changed and that match the query and geoquery
conditions. If query or geoquery are not defined then all subscribed entities that changed shall be included.

ETSI

ETSI GS CIM 004 V1.1.2 (2020-06)58

• A notification shall be sent as follows:

- The structure of the notification message shall be as mandated by clause 5.3.1.

- The Entity Attributes included (Properties or Relationships) shall be those specified by the
"notification.attributes" member in the Subscription data type (clause 5.2.12). Term to URI expansion
shall be observed (clause 5.5.7).

- If the "notification.format" member value is "keyValues" then a simplified representation of the entities
(as mandated by clause 4.5.3) shall be provided. Otherwise the normalized format shall be used.

- A notification shall be sent (as mandated by each concrete binding) to the endpoint specified by the
"endpoint.uri" member of the notification structure defined by clause 5.2.14. The notification content
shall be JSON by default. However, this can be changed to JSON-LD by means of the "endpoint.accept"
member.

- The "notification.timesSent" member shall be incremented by one.

- The "notification.lastNotification" member shall be updated with the current timestamp.

- If the response to the notification request is 200 OK then implementations shall:

 Update "notification.lastSuccess" with the current timestamp.

- If the response to the notification request is different than 200 OK then implementations shall:

 Update "notification.lastFailure" with the current timestamp.

 Update the subscription "status" to "failed".

5.9 Context Source Registration

5.9.1 Introduction

As described in clause 5.2.9, Context Source Registrations have a similar structure as Entities and are generally handled
in the same way. However, there are some aspects that are specific to Registrations, in particular with respect to the
handling of required properties. Thus, the operation descriptions for Registrations reference the respective operations
for Entities and in addition specify any deviations and additions that are necessary for handling Context Source
Registrations.

5.9.2 Register Context Source

5.9.2.1 Description

This operation allows registering a context source within an NGSI-LD system.

5.9.2.2 Use case diagram

A context provider can register one or more context sources within an NGSI-LD system as shown in figure 5.9.2.2-1.

ETSI

ETSI GS CIM 004 V1.1.2 (2020-06)59

Figure 5.9.2.2-1: Register context source use case

5.9.2.3 Input data

A data structure conforming to the CsourceRegistration data type as mandated by clause 5.2.9.

5.9.2.4 Behaviour

Implementations shall generally exhibit the behaviour described in clause 5.6.1.4, but instead of any type of entities
only Context Source Registrations can be provided. Deviating from clause 5.6.1.4, implementations shall exhibit the
following behaviour:

• If 'type' is 'null', not defined or does not represent a valid URI equivalent to the reserved type
"ContextSourceRegistration", an error of type "Bad Request Data" shall be raised.

• If the property 'url' is 'null', not defined or does not represent a valid URI, an error of type "Bad Request Data"
shall be raised.

• If the property 'information' is 'null', not defined, or is not a valid JSON array consisting only of elements of
type RegistrationInfo as specified in clause 5.2.10, an error of type "BadRequestData" shall be raised.

• If property 'timestamp' is contained in the Context Source Registration, its value has to be a valid JSON array
consisting only of elements of type TimeInterval as specified in clause 5.2.11. Otherwise an error of type
"BadRequestData" shall be raised.

• If property 'location' is contained in the Context Source Registration, its value has to be a valid GeoJSON
Geometry as specified in clause 4.7. Otherwise an error of type "BadRequestData" shall be raised.

• If the property 'expires' is 'null' or not defined then the context source registration shall last forever (or until it
is deleted from the system).

• If expires is a date and time in the past, an error of type "BadRequestData" shall be raised.

• If 'expires' is a date and time in the future, implementations shall delete the registration when this point in time
is reached.

• If the registration identifier 'id' is contained in the Context Source Registration, implementations have to check
whether this is a valid identifier that conforms to its policies and is unique within its scope. Otherwise it can
replace the 'id' with a valid registration identifier.

• Implementations shall add the concerned Context Source Registration and return an 'ok' response together with
a registration identifier (id).

• This 'id' shall be used if NGSI-LD clients need to manage the registration later.

ETSI

ETSI GS CIM 004 V1.1.2 (2020-06)60

5.9.2.5 Output data

One registration identifier (id) of type string, representing a URI. Implementations shall ensure that registration
identifiers are unique within an NGSI-LD system.

5.9.3 Update Context Source Registration

5.9.3.1 Description

This operation allows updating a context source registration in an NGSI-LD system.

5.9.3.2 Use case diagram

A context provider can update a context source registration in an NGSI-LD system as shown in figure 5.9.3.2-1.

Figure 5.9.3.2-1: Update context source registration use case

5.9.3.3 Input data

• Context Source Registration identifier (URI), the target Context Source Registration.

• A JSON-LD document representing a Context Source Registration Fragment (clause 5.4).

5.9.3.4 Behaviour

• If the target Context Source Registration id (id) is not present or it is not a valid URI, then an error of type
BadRequestData shall be raised.

• If the NGSI-LD System does not know about the target Context Source Registration, because there is no
existing Context Source Registration whose id (URI) is equivalent, an error of type ResourceNotFound shall
be raised.

• Execute the behaviour defined on clause 5.5.4 on JSON-LD validation.

• If the data types and restrictions expressed by clause 5.2.9 are not met by the Context Source Registration
Fragment, then an error of type BadRequestData shall be raised.

• Term to URI expansion of Attribute names shall be observed as mandated by clause 5.5.7.

• Then, implementations shall modify the target Context Source Registration as mandated by clause 5.5.8.

ETSI

ETSI GS CIM 004 V1.1.2 (2020-06)61

5.9.3.5 Output data

None.

5.9.4 Delete Context Source Registration

5.9.4.1 Description

This operation allows deleting a Context Source Registration from an NGSI-LD system.

5.9.4.2 Use case diagram

A context provider can delete a context source registration from an NGSI-LD system as shown in figure 5.9.4.2-1.

Figure 5.9.4.2-1: Delete context source registration use case

5.9.4.3 Input data

Registration identifier (URI) of the context source registration to be deleted (target registration).

5.9.4.4 Behaviour

• If the target context source registration id is not present or it is not a valid URI, then an error of type
"BadRequestData" shall be raised.

• If the NGSI-LD end point does not know about the target context source registration, because there is no
existing context source registration whose id (URI) is equivalent, then an error of type "ResourceNotFound"
shall be raised.

• Otherwise the context source registration shall be removed from the context source registration collection.

5.9.4.5 Output data

None.

ETSI

ETSI GS CIM 004 V1.1.2 (2020-06)62

5.10 Context Source Discovery

5.10.1 Retrieve Context Source Registration

5.10.1.1 Description

This operation allows retrieving a specific context source registration from an NGSI-LD system.

5.10.1.2 Use case diagram

A context consumer or a context provider can retrieve a specific context source registration from an NGSI-LD system
as shown in figure 5.10.1.2-1.

Figure 5.10.1.2-1: Retrieve context source registration use case

5.10.1.3 Input data

• Context source registration identifier (id) of the context source registration to be retrieved (target registration).

5.10.1.4 Behaviour

• If the context source registration id (id) is not present or it is not a valid URI, then an error of type
"BadRequestData" shall be raised.

• If the NGSI-LD end point does not know about the target context source registration, because there is no
existing context source registration whose id (URI) is equivalent, then an error of type "ResourceNotFound"
shall be raised.

• Term to URI expansion of Attribute names shall be observed as mandated by clause 5.5.7.

• Otherwise return a JSON-LD object representing the Context Source Registration as mandated by clause 5.2.9.

5.10.1.5 Output data

A JSON-LD object representing the target context source registration as mandated by clause 5.2.9.

ETSI

ETSI GS CIM 004 V1.1.2 (2020-06)63

5.10.2 Query context source registrations

5.10.2.1 Description

This operation allows discovering context source registrations from an NGSI-LD system. The behaviour of the
discovery of context source registrations differs significantly from the querying of entities as described in clause 5.7.2.
The approach is that the client submits a query for entities as described in clause 5.7.2, but instead of receiving the
Entity information, it receives a list of Context Source Registrations describing Context Sources that possibly have
some of the requested Entity information. This means that the requested Entities and Attributes are matched against the
'information' property as described in clause 5.12.

5.10.2.2 Use case diagram

A context consumer can discover context source registrations that may be able to provide (part of) the context
information specified in the query from an NGSI-LD system as shown in figure 5.10.2.2-1.

Figure 5.10.2.2-1: Discover context source registrations use case

5.10.2.3 Input data

• A reference to a JSON-LD @context (optional).

• A list (one or more) of Entity types of the matching entities (mandatory).

• A list (one or more) of Entity identifiers (optional).

• A list (one or more) of Attribute identifiers (optional).

• An id pattern as a regular expression (optional).

• An NGSI-LD query (optional) as per clause 4.9.

• An NGSI-LD geo-query (optional) as per clause 4.10.

• An NGSI-LD temporal query (optional) as per clause 4.11.

5.10.2.4 Behaviour

• Execute the behaviour defined in clause 5.5.4 on JSON-LD validation.

• If an Entity type or Entity id is not provided then an error of type "BadRequestData" shall be raised.

ETSI

ETSI GS CIM 004 V1.1.2 (2020-06)64

• If the list of Entity identifiers includes a URI which it is not valid, or the query, geo-query or temporal query
are not syntactically valid (as per clauses 4.9, 4.10 and 4.11) an error of type "BadRequestData" shall be
raised.

• If a JSON-LD context is not provided then all the query terms shall be resolved against the default JSON-LD
@context.

• Implementations should run a query that shall return context source registrations that meet the following
conditions:

- The entity specification in the query consisting of a combination of entity type and entity id/entity id
pattern (if present) matches an EntityInfo specified in a RegistrationInfo of the context source
registration. This matching is further described in clause 5.12.

- If present, at least one attribute identifier specified in the query matches one property or Relationship in
the same RegistrationInfo element that matched the entity specification above. If no Properties or
Relationships are specified in the RegistrationInfo, it is automatically considered a match. This matching
is further described in clause 5.12.

- If present, the geoquery is matched against the GeoProperty identified in the geoquery. If no
GeoProperty is specified in the geoquery, the default property is 'location'. The geoquery matches the
GeoProperty specified in the Context Source Registration, if the location directly matches or if the
location possibly contains locations that would match the geoquery.

- If present, the temporal query is matched against the 'timeproperty' identified in the temporal query. If no
'timeproperty' is specified in the temporal query, the default property is 'timestamp'. The semantics of the
match is that the 'time' in the case of the 'before' and 'after' relation is contained in or be an endpoint of a
time period included in the temporal property of the context source registration. In the case of the
'between' relation there is a match if there is an overlap between the interval specified by the 'time' and
'endtime' and a time period included in the temporal property of the context source registration.
If the 'timeproperty' is not present in a Context Source Registration, the assumption is that the Context
Source can provide the latest value and it matches if the temporal query is based on the 'after' relation.

5.10.2.5 Output data

A JSON-LD array of matching Context Source Registrations as defined by clause 5.2.9. Instead of the original Context
Source Registration which may contain a lot of irrelevant information, implementations should return filtered Context
Source Registrations, which only contain context source registration information relevant for the query, in particular
only matching RegistrationInfo elements.

5.11 Context Source Registration Subscription

5.11.1 Introduction

Context Source discovery subscriptions in general work like context information subscriptions; however, instead of
resulting in notifications with context information, the notifications contain Context Source Registrations describing
Context Sources that can potentially provide the requested context information.

5.11.2 Create Context Source Registration Subscription

5.11.2.1 Description

This operation allows creating a new Context Source discovery subscription.

5.11.2.2 Use case diagram

A Context Source subscriber can subscribe to a new context source discovery as shown in figure 5.11.2.2-1.

ETSI

ETSI GS CIM 004 V1.1.2 (2020-06)65

Figure 5.11.2.2-1: Subscribe context source discovery use case

5.11.2.3 Input data

• A data structure (represented in JSON-LD) conforming to the Subscription data type as mandated by
clause 5.2.12.

5.11.2.4 Behaviour

• The behaviour shall be as described in clause 5.8.1.4 with the following exceptions:

- If all checks described in clause 5.8.1.4 are passed, implementations shall add a new subscription to the
context source discovery subscription collection. The parameters of the created subscription shall be
configured as described in clause 5.8.1.4.

- Instead of directly matching the entities and watched Attributes from the subscription with the Context
Source registrations, the entities specified in the subscription, the watched Attributes and the Attributes
specified in the notification parameter are matched against the respective information property of the
Context Source registrations. If either the watched Attributes or the Attributes in the notification are not
present or of length 0, all possible Attributes (if present in the Context Source Registrations) for
matching entities match. This matching is further described in clause 5.12.

• If the subscription defines a "timeInterval" term, a cSourceNotification (clause 5.3.2) with all matching
Context Source Registrations shall be sent periodically, initially on subscription and when the time interval (in
seconds) specified in such value field is reached, independent of any changes to the set of Context Source
registrations.

• If "timeInterval" is not defined, initially on subscription and whenever there is a change of a matching Context
Source Registration (creation, update, deletion), implementations shall post a new cSourceNotification to the
endpoint specified in the notification parameters informing about this change by providing the Context Source
Registration(s) together with the appropriate trigger reason in the "triggerReason" member.

5.11.2.5 Output data

One subscription identifier (id) of type string, representing a URI. Implementations shall ensure that subscription
identifiers are unique within an NGSI-LD system.

5.11.3 Update context source discovery subscription

5.11.3.1 Description

This operation allows updating an existing context source discovery subscription.

ETSI

ETSI GS CIM 004 V1.1.2 (2020-06)66

5.11.3.2 Use case diagram

A context source subscriber can update a context source discovery subscription as shown in figure 5.11.3.2-1.

Figure 5.11.3.2-1: Update context source discovery subscription use case

5.11.3.3 Input data

• Subscription identifier (URI), the target Context Source discovery subscription.

• A JSON-LD document representing a Subscription Fragment.

5.11.3.4 Behaviour

• If the Subscription Id is not present or it is not a valid URI, then an error of type "BadRequestData" shall be
raised.

• If the data types and restrictions expressed by clause 5.2.12 are not met by the Subscription Fragment, then an
error of type "BadRequestData" shall be raised.

• Then, implementations shall modify the target subscription as mandated by clause 5.5.8.

• Finally, send a notification with all currently matching Context Source Registrations.

5.11.3.5 Output data

None.

5.11.4 Retrieve context source discovery subscription

5.11.4.1 Description

This operation allows retrieving an existing Context Source discovery subscription.

ETSI

ETSI GS CIM 004 V1.1.2 (2020-06)67

5.11.4.2 Use case diagram

A Context Source subscriber can retrieve a specific Context Source discovery subscription as shown in
figure 5.11.4.2-1.

Figure 5.11.4.2-1: Retrieve context source discovery subscription use case

5.11.4.3 Input data

• Id (URI) of the subscription to be retrieved (target subscription).

5.11.4.4 Behaviour

• If the subscription Id is not present or it is not a valid URI, then an error of type "BadRequestData" shall be
raised.

• If the identifier provided does not correspond to any existing subscription in the system then an error of type
"ResourceNotFound" shall be raised.

• Otherwise implementations shall query the context source discovery subscription collection and obtain the
subscription data to be returned to the caller.

5.11.4.5 Output data

A JSON-LD object representing the subscription details as mandated by clause 5.2.12.

5.11.5 Query Context Source Discovery subscriptions

5.11.5.1 Description

This operation allows listing existing Context Source discovery subscriptions.

5.11.5.2 Use case diagram

A context source subscriber can list all existing context source discovery subscriptions as shown in figure 5.11.5.2-1.

ETSI

ETSI GS CIM 004 V1.1.2 (2020-06)68

Figure 5.11.5.2-1: Retrieve context source discovery subscription use case

5.11.5.3 Input data

• Maximum number of subscriptions to be retrieved.

5.11.5.4 Behaviour

• The NGSI-LD system shall list all the existing context source discovery subscriptions up to the limit specified
as input data. If no limit is specified the number of subscriptions retrieved may depend on the implementation.

5.11.5.5 Output data

A list (represented as a JSON array) of JSON-LD objects each one representing subscription details as mandated by
clause 5.2.12.

5.11.6 Delete context source discovery subscription

5.11.6.1 Description

This operation allows deleting an existing context source discovery subscription.

5.11.6.2 Use case diagram

A context source subscriber can delete a context source discovery subscription as shown in figure 5.11.6.2-1.

ETSI

ETSI GS CIM 004 V1.1.2 (2020-06)69

Figure 5.11.6.2-1: Retrieve context source discovery subscription use case

5.11.6.3 Input data

• A subscription identifier (URI).

5.11.6.4 Behaviour

• If the subscription Id is not present or it is not a valid URI, then an error of type "BadRequestData" shall be
raised.

• If the subscription id provided does not correspond to any existing subscription in the system then an error of
type "ResourceNotFound" shall be raised.

• Otherwise implementations shall delete from the context source discovery subscriptions collection the
concerned subscription and no longer perform notifications concerning such subscription.

5.11.6.5 Output data

None.

5.11.7 Notification behaviour

A Context Source Notification is a message that allows a subscriber to be aware of the changes in the set of Context
Source Registrations describing Context Sources that can potentially provide the requested context information.
Implementations shall exhibit the behaviour described in clause 5.8.6 with the following exceptions:

• If a subscription defines a "timeInterval" member, a CsourceNotification (clause 5.3.2) shall be sent on initial
subscription and periodically, when the time specified time interval (in seconds) has elapsed, regardless of any
changes to the set of context source registrations. The CsourceNotification message shall include all the
Context Source Registrations whose information property matches the entities and watched Attributes or
Attributes specified in the notification parameter and, if present, have a matching geo-query. If either the
watched Attributes or the Attributes in the notification are not present or of length 0, all possible Attributes (if
present in the Context Source Registrations) for fitting entities match.

• If a subscription does not define a "timeInterval" term, the csource notification shall be sent on initial
subscription and whenever there is a change in a matching csource registration. Such a change may be
triggered by the creation of a new matching csource registration, the update of a csource registration (whether
matching before the update, after the update or in both cases) or the deletion of a matching csource
registration. The notification message shall include the matching csource registration(s) together with the
appropriate trigger reason in the "triggerReason" member.

ETSI

ETSI GS CIM 004 V1.1.2 (2020-06)70

• Instead of providing the original Context Source Registration which may contain a lot of irrelevant
information, implementations should return filtered Context Source Registrations, which only contain context
source registration information relevant for the subscription, in particular only matching RegistrationInfo
elements.

• A csource notification shall be sent as follows:

- The structure of the csource notification message shall be as mandated by clause 5.3.2.

- A csource notification shall be sent to the "endpoint".

- The "notification.timesSent" member shall be incremented by one.

- The "notification.lastNotification" member shall be updated with the current timestamp.

- If the notification is sent successfully:

 Update "notification.lastSuccess" with the current timestamp.

- If the notification is not sent successfully:

 Update "notification.lastFailure" with the current timestamp.

 Update the subscription "status" to "failed".

5.12 Matching Context Source Registrations
When querying Context Source Registrations as described in clause 5.10.2 and subscribing to Context Source
Registrations as described in clause 5.11.2, the Entities and Attributes specified in the request have to be matched
against the set of Context source registrations, extracting the matching ones. This clause describes this matching.

The relevant Entity specification information in the query for Context Source Registrations are the list of Entity Types,
the list of Entity identifiers (if present), the id pattern (if present) and the list of Attribute identifiers (if present). In the
case of subscriptions to context source registrations, it is the Entities as specified in the array of type EntityInfo in the
Subscription, the watchedAttributes element of the Subscription and the attributes specified as part of the
NotificationParams element of the Subscription. If the attributes in the NotificationParams element are empty or not
present, the matching is done as if no attribute identifiers have been specified, otherwise the combination of the
watchedAttributes and the attributes in the NotificationParams element are used as the specified attribute identifiers for
the matching.

Even though the structure of Entity specifications differs in queries and subscriptions, they consist of the same
information, so for the purpose of this clause, the EntityInfo specification refers to the relevant elements for matching,
i.e. Entity Types, Entity identifiers, id pattern and Attribute identifiers. Except for the mandatory Entity Types, all other
elements are optional.

An EntityInfo specification matches a Context Source Registration if at least one of the RegistrationInfo elements in the
information element matches. An EntityInfo specification matches a RegistrationInfo if the following conditions hold:

• The Entity Types, Entity identifiers and id pattern match at least one of the EntityInfo elements (see below).

• The Attribute identifiers match the combination of properties and relationships specified in the
RegistrationInfo (see below).

An EntityInfo specification consisting of Entity Types, Entity identifiers and id pattern matches an EntityInfo element if
one of the specified Entity Types matches the entity type in the EntityInfo element and one of the following conditions
holds:

• The EntityInfo contains neither an id nor an idPattern.

• One of the specified entity identifiers matches the id in the EntityInfo.

• At least one of the specified entity identifiers matches the idPattern in the EntityInfo.

• The specified id pattern matches the id in the EntityInfo.

ETSI

ETSI GS CIM 004 V1.1.2 (2020-06)71

• Both a specified id pattern and an idPattern in the Entity Info are present (since in the general case it is not
easily feasible to determine if there can be identifiers matching both patterns).

Attribute identifiers match the combination of Properties and Relationships if one of the following conditions hold:

• No Attribute identifiers have been specified (as this means all Attributes are requested).

• The combination of Properties and Relationships is empty (as this means only Entities have been registered
and the Context Sources may have matching Property or Relationship instances).

• If at least one of the specified attribute identifier matches a Property or Relationship specified in the
RegistrationInfo.

6 API HTTP binding

6.1 Introduction
This clause defines the resources and operations of the NGSI-LD API. The NGSI-LD API is structured in terms of
HTTP [3], [4] verbs, input and output payloads.

6.2 Global definitions and resource structure
All resource URIs of this API shall have the following root:

• {apiRoot}/{apiName}/{apiVersion}/

NOTE 1: The apiRoot discovery process is out of the scope of the present document.

NOTE 2: The apiRoot for Context Source related aspects and the apiRoot for general Entity-related aspects can be
different, e.g. the Context Source related aspects can be implemented by a Context Registry as shown for
the distributed and federated architectures (see clause 4.3), whereas the Entity-related aspects would be
implemented by a Context Broker.

The apiRoot includes the scheme ("http" or "https"), host and optional port, and an optional prefix string. The API shall
support HTTP over TLS (also known as HTTPS - see IETF RFC 2818 [18]). TLS version 1.2 as defined by IETF
RFC 5246 [19] shall be supported. HTTP without TLS is not recommended.

The apiName shall be set to "ngsi-ld" and the apiVersion shall be set to "v1" for the present document.

All resource URIs in clauses 6.4, 6.5, 6.6, 6.7, 6.8, 6.9, 6.10, 6.11, 6.12 and 6.13 are defined relative to the above root
URI. The structure of the resources under the root URI is shown in figure 6.2-1 and methods defined on them are shown
in table 6.2-1.

ETSI

ETSI GS CIM 004 V1.1.2 (2020-06)72

Figure 6.2-1: Resource URI structure of the NGSI-LD API

ETSI

ETSI GS CIM 004 V1.1.2 (2020-06)73

Table 6.2-1: Resources and HTTP methods defined on them

Resource Name Resource URI HTTP Method Meaning

Entity List /entities
POST Entity creation
GET Query entities

Entity by id /entities/{entityId}
GET Entity retrieval by id

DELETE Entity deletion by id

Entity Attribute List /entities/{entityId}/attrs
POST Append entity Attributes

PATCH Update entity Attributes

Attribute by id /entities/{entityId}/attrs/{attrId}
PATCH Attribute partial update
DELETE Attribute delete

Subscriptions List /subscriptions
POST Subscription creation
GET Subscription list retrieval

Subscription by Id /subscriptions/{subscriptionId}
GET Subscription retrieval by id

PATCH Subscription update by id
DELETE Subscription deletion by id

Context source
registration list /csources

POST Csource registration creation
GET Discover Csource registrations

Context source
registration by Id /csources/{registrationId}

GET Csource registration retrieval by id
PATCH Csource registration update by id
DELETE Csource registration deletion by id

Context source
registration

subscription list
/csourceSubscriptions

POST Csource registration subscription

GET Csource registration subscription list
retrieval

Context source
registration

subscription by Id
/csourceSubscriptions/{subscriptionId}

GET Csource registration subscription
retrieval by id

PATCH Csource registration subscription
update by id

DELETE Csource registration subscription
deletion by id

6.3 Common behaviours

6.3.1 Introduction

This clause extends the API common behaviours to the particularities of the HTTP REST binding. For each operation
implementations shall exhibit the common behaviours as specified by clause 5.5 and the behaviours defined by the
present clause.

6.3.2 Error types

This clause associates API error types defined by clause 5.5.2 with HTTP status codes as shown in table 6.3.2-1.

Table 6.3.2-1: Mapping of error types to HTTP status codes

Error Type HTTP status
http://uri.etsi.org/ngsi-ld/errors/InvalidRequest 400
http://uri.etsi.org/ngsi-ld/errors/BadRequestData 400
http://uri.etsi.org/ngsi-ld/errors/AlreadyExists 409
http://uri.etsi.org/ngsi-ld/errors/OperationNotSupported 422
http://uri.etsi.org/ngsi-ld/errors/ResourceNotFound 404
http://uri.etsi.org/ngsi-ld/errors/InternalError 500

In addition, implementations shall support specific errors of the HTTP binding, particularly "Method Not Allowed"
(405) which shall be raised when a client invokes a wrong HTTP verb over a resource.

ETSI

ETSI GS CIM 004 V1.1.2 (2020-06)74

6.3.3 Reporting errors

When an API operation results in an error, implementations shall return an HTTP response as follows:

• Content-Type: application/json.

• HTTP Status Code: As per clause 6.3.2 depending on error type.

• Payload: A JSON object including all the terms defined by clause 5.5.3.

6.3.4 HTTP request preconditions

For POST and PATCH HTTP requests implementations shall check the following preconditions:

• Content-Type header shall be "application/json" or "application/ld+json".

• Content-Length header shall include the length of the input payload.

For PATCH HTTP requests "application/merge-patch+json" is allowed as Content-Type, as mandated by [16].
Implementations shall interpret such MIME type as equivalent to "application/json".

For GET HTTP requests implementations shall check the following preconditions:

• Accept header shall be "application/json", "application/ld+json" or "*/*". A non-present accept header is also
allowed. In that particular case "application/json" shall be assumed.

If an incoming HTTP request does not meet the preconditions stated above, an HTTP error response of type
InvalidRequest shall be returned.

6.3.5 JSON-LD @context resolution

In the HTTP REST binding, implementations shall resolve the JSON-LD "@context" associated to an incoming HTTP
request as follows:

• If the request verb is GET or DELETE, then the associated JSON-LD "@context" shall be obtained from a
Link header [7] as mandated by JSON-LD [2], clause 6.8. In the absence of such Link header, then the
associated "@context" shall be the default JSON-LD "@context".

EXAMPLE: The structure of the referred Link header is shown below. The first component (between < >) is a
dereferenceable URI pointing to the JSON-LD document which contains the @context to be used
to expand the terms used by the corresponding operation. The second parameter is a fixed, non-
dereferenceable URI used to denote a unique identifier and semantics for this header (marking it as
a link to a JSON-LD @context). The third and final parameter flags the MIME type of the linked
resource (JSON-LD).

 Link: <http://json-ld.org/contexts/person.jsonld>; rel="http://www.w3.org/ns/json-ld#context";
type="application/ld+json"

• If the request verb is POST or PATCH and the Content-Type header is "application/json", then the @context
shall be obtained from a Link header as mandated by JSON-LD [2], clause 6.8. In the absence of such Link
header, then the "@context" shall be the default @context.

• If the request verb is POST or PATCH and the Content-Type header is "application/ld+json", then the
associated @context shall be obtained from the input payload itself. If no @context can be obtained from the
input payload, then an HTTP error response of type BadRequestData shall be raised.

6.3.6 HTTP response common requirements

Implementations shall honour the Accept header provided by HTTP requests as follows:

• If the Accept header contains "application/json" but not "application/ld+json" then the response's Content-
Type shall be "application/json" and such response shall include a Link to the associated JSON-LD @context
as mandated by [2], clause 6.8.

ETSI

ETSI GS CIM 004 V1.1.2 (2020-06)75

• If the Accept header contains "application/ld+json", then the output payload provided by the HTTP response
shall include a JSON-LD @context.

6.3.7 Simplified representation of entities

For HTTP GET operations performed over the resource /entities and all of its sub-resources, implementations shall
support the parameter specified in table 6.3.7-1.

Table 6.3.7-1: Simplified representation: options parameter

Name Data type Cardinality Remarks
options Comma separated list of strings 0..1 When its value includes the keyword "keyValues", a

simplified representation of entities shall be provided as
defined by clause 4.5.3.

6.3.8 Notification behaviour

In the HTTP binding a notification shall be sent by issuing an HTTP POST request targeted to the value of
"endpoint.uri" member of the subscription structure defined by clause 5.2.12. The MIME type associated to the POST
request shall be "application/json" by default. However, this can be changed to application/ld+json by means of the
"endpoint.accept" member.

If the target MIME type is "application/json" then the HTTP notification request shall include a Link header with a
reference to the corresponding JSON-LD @context as mandated by the JSON-LD specification [2], clause 6.8 (to the
default JSON-LD @context if none available).

6.3.9 Csource Notification behaviour

In the HTTP binding a csource notification shall be sent by issuing an HTTP POST request targeted to the value of
"endpoint.uri" member of the csource subscription structure defined by clause 5.2.12. The MIME type associated to the
POST request shall be "application/json" by default. However, this can be changed to application/ld+json by means of
the "endpoint.accept" member.

If the target MIME type is "application/json" then the HTTP notification request shall include a Link header with a
reference to the corresponding JSON-LD @context as mandated by the JSON-LD specification [2], clause 6.8 (to the
default JSON-LD @context if none available).

6.4 Resource: entities

6.4.1 Description

This resource represents a collection of entities known to a NGSI-LD system.

6.4.2 Resource definition

Resource URI:

• /entities

6.4.3 Resource methods

6.4.3.1 POST

This method is bound to the operation "Create Entity" and shall exhibit the behaviour defined by clause 5.6.1, taking the
entity to be created from the HTTP request input payload. Figure 6.4.3.1-1 shows the Create Entity interaction and
table 6.4.3.1-1 describes the request body and possible responses.

ETSI

ETSI GS CIM 004 V1.1.2 (2020-06)76

Figure 6.4.3.1-1: Create Entity interaction

Table 6.4.3.1-1: Post Entity request body and possible responses

Request Body Data Type Cardinality Remarks
NGSI-LD Entity 1 Payload body in the request contains a JSON-LD object

which represents the entity that is to be created.
Response Body Data Type Cardinality Response Codes Remarks

N/A N/A 201 Created Upon success, the HTTP response
shall include a "Location" HTTP
header that contains the resource URI
of the created entity resource.

ProblemDetails [10] 0..1 400 Bad Request It is used to indicate that the request
or its content is incorrect, see
clause 6.3.2.
In the returned ProblemDetails
structure, the "detail" member should
convey more information about the
error.

ProblemDetails [10] 0..1 409 Already Exists It is used to indicate that the entity
already exists, see clause 6.3.2.
In the returned ProblemDetails
structure, the "detail" attribute should
convey more information about the
error.

ProblemDetails [10] 0..1 422 Unprocessable
Entity

It is used to indicate that the operation
is not available, see clause 6.3.2.
In the returned ProblemDetails
structure, the "detail" attribute should
convey more information about the
error.

6.4.3.2 GET

This method is associated to the operation "Query Entities" and shall exhibit the behaviour defined by clause 5.7.2,
providing entities as part of the HTTP response output payload. Figure 6.4.3.2-1 shows the query entities interaction.

Figure 6.4.3.2-1: Query Entities interaction

ETSI

ETSI GS CIM 004 V1.1.2 (2020-06)77

The query parameters that shall be supported by implementations are those defined in table 6.4.3.2-1 and table 6.4.3.2-2
describes the request body and possible responses.

Table 6.4.3.2-1: Query parameters

Name Data type Cardinality Remarks
id Comma separated list of

URIs
0..1 List of entity ids to be retrieved

type Comma separated list of
entity type names

0..1 List of entity types to be retrieved

idPattern Regular expression as
defined by [11]

0..1 Regular expression that shall be matched
by entity ids

attrs Comma separated list of
attribute names (Properties
or Relationships)

0..1 List of Attributes
(Properties or Relationships) to be
retrieved

q String 0..1 Query as per clause 4.9
georel String 0..1

It shall be 1 if "geometry" or
"coordinates" are present

Geo relationship as per clause 4.10

geometry String 0..1
It shall be 1 if "georel" or
"coordinates" are present

Geometry as per clause 4.10

coordinates String 0..1
It shall be one if "georel" or
"geometry" are present

Coordinates serialized as a string as per
clause 4.10

geoproperty string representing a
Property Name

0..1
It shall be ignored if no
geoquery is present

The name of the Property that contains the
geospatial data that will be used to resolve
the geoquery

timeproperty string representing a
Property Name

0..1
It shall be ignored if no
temporal query is present

The name of the Property that contains the
temporal data that will be used to resolve
the temporal query

Table 6.4.3.2-2: Get Entities request body and possible responses

Request Body Data Type Cardinality Remarks
N/A

Response Body Data Type Cardinality Response Codes Remarks
NGSI-LD Entity[] 1 200 OK Upon success, a response body

containing the query result as a list of
entities.

ProblemDetails [10] 0..1 400 Bad Request It is used to indicate that the request or its
content is incorrect, see clause 6.3.2.
In the returned ProblemDetails structure,
the "detail" attribute should convey more
information about the error.

6.5 Resource: entities/{entityId}

6.5.1 Description

This resource represents an entity known to a NGSI-LD system.

ETSI

ETSI GS CIM 004 V1.1.2 (2020-06)78

6.5.2 Resource definition

Resource URI:

• /entities/{entityId}

Resource URI variables for this resource are defined in table 6.5.2-1.

Table 6.5.2-1: URI variables

Name Definition
entityId Id (URI) of the entity to be retrieved

6.5.3 Resource methods

6.5.3.1 GET

This method is associated to the operation "Retrieve Entity" and shall exhibit the behaviour defined by clause 5.7.1. The
entity identifier is the value of the resource URI variable "entityId". Figure 6.5.3.1-1 shows the retrieve entity
interaction.

Figure 6.5.3.1-1: Retrieve Entity interaction

The query parameters that shall be supported are those defined in table 6.5.3.1-1 and table 6.5.3.1-2 describes the
request body and possible responses.

Table 6.5.3.1-1: Query parameters

Name Data type Cardinality Remarks
attrs Comma separated list of attribute

names (Properties or Relationships)
0..1 List of Attributes to be retrieved. If not specified, all

Attributes related to the entity shall be retrieved.

Table 6.5.3.1-2: Get Entity request body and possible responses

Request Body Data Type Cardinality Remarks
N/A

Response Body Data Type Cardinality Response Codes Remarks
NGSI-LD Entity 1 200 OK Upon success, a response body

containing the JSON-LD representation of
the target entity containing the selected
Attributes.

ProblemDetails [10] 0..1 400 Bad Request It is used to indicate that the request or its
content is incorrect, see clause 6.3.2.
In the returned ProblemDetails structure,
the "detail" attribute should convey more
information about the error.

ProblemDetails [10] 0..1 404 Not Found It is used when a client provided an entity
identifier (URI) not known to the system,
see clause 6.3.2.

ETSI

ETSI GS CIM 004 V1.1.2 (2020-06)79

6.5.3.2 DELETE

This method is associated to the operation "Delete Entity" and shall exhibit the behaviour defined by clause 5.6.6. The
entity identifier is the value of the resource URI variable "entityId". Figure 6.5.3.2-1 shows the delete entity interaction
and table 6.5.3.2-1 describes the request body and possible responses.

Figure 6.5.3.2-1: Delete Entity interaction

Table 6.5.3.2-1: Delete Entity request body and possible responses

Request Body Data Type Cardinality Remarks
N/A

Response Body Data Type Cardinality Response Codes Remarks
N/A 204 No Content
ProblemDetails [10] 0..1 400 Bad Request It is used to indicate that the request or

its content is incorrect, see clause 6.3.2.
In the returned ProblemDetails
structure, the "detail" attribute should
convey more information about the
error.

ProblemDetails [10] 0..1 404 Not Found It is used when a client provided an
entity identifier (URI) not known to the
system, see clause 6.3.2.

6.6 Resource: entities/{entityId}/attrs

6.6.1 Description

This resource represents all the Attributes (Properties or Relationships) of a NGSI-LD Entity.

6.6.2 Resource definition

Resource URI:

• /entities/{entityId}/attrs

Resource URI variables for this resource are defined in table 6.6.2-1.

Table 6.6.2-1: URI variables

Name Definition
entityId Id (URI) of the concerned entity

ETSI

ETSI GS CIM 004 V1.1.2 (2020-06)80

6.6.3 Resource methods

6.6.3.1 POST

This method is bound to the "Append Entity Attributes" operation and shall exhibit the behaviour defined by
clause 5.6.3. The entity identifier is the value of the resource URI variable "entityId". The data to be appended shall be
contained in the HTTP request input payload. Figure 6.6.3.1-1 shows the append entity attributes interaction and
table 6.6.3.1-1 describes the request body and possible responses.

The "options" query parameter for this request can take the following values:

• "noOverwrite". Indicates that no attribute overwrite shall be performed.

Figure 6.6.3.1-1: Append Entity Attributes interaction

Table 6.6.3.1-1: Post Entity Attributes request body and possible responses

Request Body Data Type Cardinality Remarks
NGSI-LD Entity
Fragment

1 Entity Fragment containing a complete representation of the
Attributes to be added.

Response Body Data Type Cardinality Response Codes Remarks
N/A 204 No content All the Attributes were appended

successfully.
UpdateResult 1 207 Multi-Status Only the Attributes included in the

response payload were successfully
appended.

ProblemDetails [10] 0..1 400 Bad Request It is used to indicate that the request or
its content is incorrect, see clause 6.3.2.
In the returned ProblemDetails
structure, the "detail" attribute should
convey more information about the
error.

ProblemDetails [10] 0..1 404 Not Found It is used when a client provided an
entity identifier (URI) not known to the
system, see clause 6.3.2.

6.6.3.2 PATCH

This method is bound to the "Update Entity Attributes" operation and shall exhibit the behaviour defined by
clause 5.6.2. The entity identifier is the value of the resource URI variable "entityId". The data to be appended shall be
contained in the HTTP request input payload. Figure 6.6.3.2-1 shows the Update Entity Attributes interaction and
table 6.6.3.2-1 describes the request body and possible responses.

ETSI

ETSI GS CIM 004 V1.1.2 (2020-06)81

Figure 6.6.3.2-1: Update Entity Attributes interaction

Table 6.6.3.2-1: Patch Entity Attributes request body and possible responses

Request Body Data Type Cardinality Remarks
NGSI-LD Entity
Fragment

1 Entity Fragment containing a complete representation of the
Attributes to be updated.

Response Body Data Type Cardinality Response Codes Remarks
N/A 204 No content All the Attributes were updated

successfully.
UpdateResult 1 207 Multi-Status Only the Attributes included in the

response payload were successfully
updated.

ProblemDetails [10] 0..1 400 Bad Request It is used to indicate that the request or
its content is incorrect, see clause 6.3.2.
In the returned ProblemDetails
structure, the "detail" attribute should
convey more information about the
error.

ProblemDetails [10] 0..1 404 Not Found It is used when a client provided an
entity identifier not known to the system,
see clause 6.3.2.

6.7 Resource: entities/{entityId}/attrs/{attrId}

6.7.1 Description

This resource represents an attribute (Property or Relationship) of a NGSI-LD Entity.

6.7.2 Resource definition

Resource URI:

• /entities/{entityId}/attrs/{attrId}

Resource URI variables for this resource are defined in table 6.7.2-1.

Table 6.7.2-1: URI variables

Name Definition
entityId Id (URI) of the concerned entity
attrId Attribute name (Property or Relationship)

ETSI

ETSI GS CIM 004 V1.1.2 (2020-06)82

6.7.3 Resource methods

6.7.3.1 PATCH

This method is bound to the "Partial Attribute Update" operation and shall exhibit the behaviour defined by
clause 5.6.4. The entity identifier is the value of the resource URI variable "entityId". The attribute name is the value of
the resource URI variable "attrId". The Entity Fragment shall be contained in the HTTP request input payload.
Figure 6.7.3.1-1 shows the Partial Attribute Update interaction and table 6.7.3.1-1 describes the request body and
possible responses.

Figure 6.7.3.1-1: Partial Attribute Update interaction

Table 6.7.3.1-1: Patch Entity Attribute request body and possible responses

Request Body Data Type Cardinality Remarks
NGSI-LD Entity
Fragment

1 Entity Fragment containing the elements of the attribute to
be updated.

Response Body Data Type Cardinality Response Codes Remarks
N/A 204 No content The attribute was updated

successfully.
ProblemDetails [10] 0..1 400 Bad Request It is used to indicate that the request

or its content is incorrect, see
clause 6.3.2.
In the returned ProblemDetails
structure, the "detail" attribute should
convey more information about the
error.

ProblemDetails [10] 0..1 404 Not Found It is used when a client provided an
entity identifier or attribute name not
known to the system, see
clause 6.3.2.

6.7.3.2 DELETE

This method is associated to the operation "Delete Entity Attribute" and shall exhibit the behaviour defined by
clause 5.6.5. The entity identifier is the value of the resource URI variable "entityId". The attribute name is the value of
the resource URI variable "attrId". Figure 6.7.3.2-1 shows the Delete Entity Attribute interaction and table 6.7.3.2-1
describes the request body and possible responses.

ETSI

ETSI GS CIM 004 V1.1.2 (2020-06)83

Figure 6.7.3.2-1: Delete Entity Attribute interaction

Table 6.7.3.2-1: Delete Entity Attribute request body and possible responses

Request Body Data Type Cardinality Remarks
N/A

Response Body Data Type Cardinality Response Codes Remarks
N/A 204 No Content
ProblemDetails [10] 0..1 400 Bad Request It is used to indicate that the request

or its content is incorrect, see
clause 6.3.2.
In the returned ProblemDetails
structure, the "detail" attribute should
convey more information about the
error.

ProblemDetails [10] 0..1 404 Not Found It is used when a client provided an
entity identifier (URI) or attribute
name not known to the system. see
clause 6.3.2.

6.8 Resource: csources

6.8.1 Description

This resource represents a collection of context source registrations known to a NGSI-LD system.

6.8.2 Resource definition

Resource URI:

• /csources

6.8.3 Resource methods

6.8.3.1 POST

This method is bound to the operation "Register Context Source" and shall exhibit the behaviour defined by
clause 5.9.2, taking the context source registration to be created from the HTTP request input payload. Figure 6.8.3.1-1
shows the Register Context Source interaction and table 6.8.3.1-1 describes the request body and possible responses.

ETSI

ETSI GS CIM 004 V1.1.2 (2020-06)84

Figure 6.8.3.1-1: Register Context Source interaction

Table 6.8.3.1-1: Patch Attribute request body and possible responses

Request Body Data Type Cardinality Remarks
CsourceRegistration 1 Payload body in the request contains a JSON-LD object which

represents the context source registration that is to be created.
Response Body Data Type Cardinality Response Codes Remarks

N/A N/A 201 Created Upon success, the HTTP response shall
include a "Location" HTTP header that
contains the resource URI of the created
context source registration resource.

ProblemDetails [10] 0..1 400 Bad Request It is used to indicate that the request or
its content is incorrect see clause 6.3.2.
In the returned ProblemDetails
structure, the "detail" attribute should
convey more information about the
error.

ProblemDetails [10] 0..1 409 Already Exists It is used to indicate that the context
source registration already exists, see
clause 6.3.2.
In the returned ProblemDetails
structure, the "detail" attribute should
convey more information about the
error.

ProblemDetails [10] 0..1 422 Unprocessable
Context Source
Registration

It is used to indicate that the operation is
not available see clause 6.3.2.
In the returned ProblemDetails
structure, the "detail" attribute should
convey more information about the
error.

6.8.3.2 GET

This method is associated to the operation "Query Context Source Registrations" and shall exhibit the behaviour defined
by clause 5.10.2, i.e. the parameters in the request describe entity related information, but instead of directly providing
this entity information, the context source registration data, which describes context sources that can possibly provide
the information, are returned as part of the HTTP response output payload. Figure 6.8.3.2-1 shows the Query Context
Source Registrations interaction.

ETSI

ETSI GS CIM 004 V1.1.2 (2020-06)85

Figure 6.8.3.2-1: Query Context Source Registrations interaction

The query parameters that shall be supported by implementations are those defined in table 6.8.3.2-1 and table 6.8.3.2-2
describes the request body and possible responses.

Table 6.8.3.2-1: Query parameters

Name Data type Cardinality Remarks
id Comma separated list of

URIs
0..1 List of entity ids to be retrieved

type Comma separated list of
entity type names

0..1 List of entity types to be retrieved

idPattern Regular expression as
defined by [11]

0..1 Regular expression that shall be matched
by entity ids satisfying the query

attrs Comma separated list of
attribute names (Properties
or Relationships)

0..1 List of Attributes
(Properties or Relationships) to be
retrieved

q String 0..1 Query as per clause 4.9
georel String 0..1

It shall be 1 if "geometry" or
"coordinates" are present

Geo relationship as per clause 4.10

geometry String 0..1
It shall be 1 if "georel" or
"coordinates" are present

Geometry as per clause 4.10

coordinates String 0..1
It shall be one if "georel" or
"geometry" are present

Coordinates serialized as a string as per
clause 4.10

geoproperty String representing a
Property name

0..1
It shall be ignored if no
geoquery is present

The name of the Property that contains the
geospatial data that will be used to resolve
the geoquery

timeproperty String representing a
Property name

0..1
It shall be ignored if no
temporal query is present

The name of the Property that contains the
temporal data that will be used to resolve
the temporal query

Table 6.8.3.2-2: Get Context Source Registrations request body and possible responses

Request Body Data Type Cardinality Remarks
N/A

Response Body Data Type Cardinality Response Codes Remarks
CSourceRegistration[] 1 200 OK Upon success, a response body

containing the query result as an array
of context source registrations.

ProblemDetails [10] 0..1 400 Bad Request It is used to indicate that the request or
its content is incorrect see clause 6.3.2.
In the returned ProblemDetails
structure, the "detail" attribute should
convey more information about the
error.

ETSI

ETSI GS CIM 004 V1.1.2 (2020-06)86

6.9 Resource: csources/{registrationId}

6.9.1 Description

This resource represents a collection of context source registrations known to a NGSI-LD system.

6.9.2 Resource definition

Resource URI:

• /csources/{registrationId}

Resource URI variables for this resource are defined in table 6.9.2-1.

Table 6.9.2-1: URI variables

Name Definition
registrationId Id (URI) of the context source registration

6.9.3 Resource methods

6.9.3.1 GET

This method is associated with the operation "Retrieve Context Source Registration" and shall exhibit the behaviour
defined by clause 5.10.1. The registration identifier is the value of the resource URI variable "registrationId".
Figure 6.9.3.1-1 shows the Retrieve Context Source Registration interaction and table 6.9.3.1-1 describes the request
body and possible responses.

Figure 6.9.3.1-1: Retrieve Context Source Registration interaction

Table 6.9.3.1-1: Get Context Source Registration request body and possible responses

Request Body Data Type Cardinality Remarks
N/A

Response Body Data Type Cardinality Response Codes Remarks
CsourceRegistration 1 200 OK Upon success, a response body

containing the JSON-LD representation
of the target context source registration.

ProblemDetails [10] 0..1 400 Bad Request It is used to indicate that the request or
its content is incorrect, see clause 6.3.2.
In the returned ProblemDetails
structure, the "detail" attribute should
convey more information about the
error.

ProblemDetails [10] 0..1 404 Not Found It is used when a client provided an
context source registration identifier
(URI) not known to the system, see
clause 6.3.2.

ETSI

ETSI GS CIM 004 V1.1.2 (2020-06)87

6.9.3.2 PATCH

This method is bound to the "Update Context Source Registration" operation and shall exhibit the behaviour defined by
clause 5.9.3. The context source registration identifier is the value of the resource URI variable "registrationId". The
context source registration to be updated shall be contained in the HTTP request input payload. Figure 6.9.3.2-1 shows
the Update Context Source Registration interaction and table 6.9.3.2-1 describes the request body and possible
responses.

Figure 6.9.3.2-1: Update Context Source Registration interaction

Table 6.9.3.2-1: Patch Context Source Registration request body and possible responses

Request Body Data Type Cardinality Remarks
CSourceRegistration 1 Payload body in the request contains a JSON-LD object

which represents the context source registration that is to
be updated.

Response Body Data Type Cardinality Response Codes Remarks
N/A 204 No content The context source registration was

successfully updated.
ProblemDetails [10] 0..1 400 Bad Request It is used to indicate that the request

or its content is incorrect, see
clause 6.3.2.
In the returned ProblemDetails
structure, the "detail" attribute should
convey more information about the
error.

ProblemDetails [10] 0..1 404 Not Found It is used when a client provided a
context source registration identifier
not known to the system, see
clause 6.3.2.

6.9.3.3 DELETE

This method is associated to the operation "Delete Context Source Registration" and shall exhibit the behaviour defined
by clause 5.9.4. The context source registration identifier is the value of the resource URI variable "registrationId".
Figure 6.9.3.3-1 shows the Delete Context Source Registration interaction and table 6.9.3.3-1 describes the request body
and possible responses.

Figure 6.9.3.3-1: Delete Context Source Registration interaction

ETSI

ETSI GS CIM 004 V1.1.2 (2020-06)88

Table 6.9.3.3-1: Delete Context Source Registration request body and possible responses

Request Body Data Type Cardinality Remarks
N/A

Response Body Data Type Cardinality Response Codes Remarks
N/A 204 No Content
ProblemDetails [10] 0..1 400 Bad Request It is used to indicate that the request

or its content is incorrect, see
clause 6.3.2.
In the returned ProblemDetails
structure, the "detail" attribute should
convey more information about the
error.

ProblemDetails [10] 0..1 404 Not Found It is used when a client provided a
context source registration identifier
(URI) not known to the system, see
clause 6.3.2.

6.10 Resource: subscriptions

6.10.1 Description

This resource represents a collection of subscriptions known to a NGSI-LD system.

6.10.2 Resource definition

Resource URI:

• /subscriptions

6.10.3 Resource methods

6.10.3.1 POST

This method is bound to the operation "Create Subscription" and shall exhibit the behaviour defined by clause 5.8.1,
taking the subscription to be created from the HTTP request input payload. Figure 6.10.3.1-1 shows the Create
Subscription interaction and table 6.10.3.1-1 describes the request body and possible responses.

Figure 6.10.3.1-1: Create Subscription interaction

ETSI

ETSI GS CIM 004 V1.1.2 (2020-06)89

Table 6.10.3.1-1: Post Subscription request body and possible responses

Request Body Data Type Cardinality Remarks
Subscription 1 Payload body in the request contains a JSON-LD object which

represents the subscription that is to be created.
Response Body Data Type Cardinality Response Codes Remarks

N/A N/A 201 Created Upon success, the HTTP response shall
include a "Location" HTTP header that
contains the resource URI of the created
subscription resource.

ProblemDetails [10] 0..1 400 Bad Request It is used to indicate that the request or its
content is incorrect see clause 6.3.2.
In the returned ProblemDetails structure,
the "detail" attribute should convey more
information about the error.

ProblemDetails [10] 0..1 409 Already Exists It is used to indicate that the subscription
already exists see clause 6.3.2.
In the returned ProblemDetails structure,
the "detail" attribute should convey more
information about the error.

6.10.3.2 GET

This method is associated to the operation "Query Subscriptions" and shall exhibit the behaviour defined by
clause 5.8.4, providing the subscription data as part of the HTTP response output payload. Figure 6.10.3.2-1 shows the
Query Subscriptions interaction.

Figure 6.10.3.2-1: Query Subscriptions interaction

The query parameters that shall be supported by implementations are those defined in table 6.10.3.2-1 and
table 6.10.3.2-2 describes the request body and possible responses.

Table 6.10.3.2-1: Query parameters

Name Data type Cardinality Remarks
limit Number 0..1 Maximum number of subscriptions to be retrieved

ETSI

ETSI GS CIM 004 V1.1.2 (2020-06)90

Table 6.10.3.2-2: Get Subscriptions request body and possible responses

Request Body Data Type Cardinality Remarks
N/A

Response Body Data Type Cardinality Response Codes Remarks
Subscription[] 1 200 OK Upon success, a response body

containing a list of subscriptions.
ProblemDetails [10] 0..1 400 Bad Request It is used to indicate that the request

or its content is incorrect see
clause 6.3.2.
In the returned ProblemDetails
structure, the "detail" attribute should
convey more information about the
error.

6.11 Resource: subscriptions/{subscriptionId}

6.11.1 Description

This resource represents a subscription known to a NGSI-LD system.

6.11.2 Resource definition

Resource URI:

• /subscriptions/{subscriptionId}

Resource URI variables for this resource are defined in table 6.11.2-1.

Table 6.11.2-1: URI variables

Name Definition
subscriptionId Id (URI) of the concerned subscription

6.11.3 Resource methods

6.11.3.1 GET

This method is associated to the operation "Retrieve Subscription" and shall exhibit the behaviour defined by
clause 5.8.3. The subscription identifier is the value of the resource URI variable "subscriptionId". Figure 6.11.3.1-1
shows the Retrieve Subscription interaction and table 6.11.3.1-1 describes the request body and possible responses.

Figure 6.11.3.1-1: Retrieve Subscription interaction

ETSI

ETSI GS CIM 004 V1.1.2 (2020-06)91

Table 6.11.3.1-1: Get Subscription request body and possible responses

Request Body Data Type Cardinality Remarks
N/A

Response Body Data Type Cardinality Response Codes Remarks
Subscription 1 200 OK Upon success, a response body containing

the JSON-LD representation of the target
subscription.

ProblemDetails [10] 0..1 400 Bad Request It is used to indicate that the request or its
content is incorrect, see clause 6.3.2.
In the returned ProblemDetails structure,
the "detail" attribute should convey more
information about the error.

ProblemDetails [10] 0..1 404 Not Found It is used when a client provided a
subscription identifier (URI) not known to
the system, see clause 6.3.2.

6.11.3.2 PATCH

This method is associated to the operation "Update Subscription" and shall exhibit the behaviour defined by
clause 5.8.2. The subscription identifier is the value of the resource URI variable "subscriptionId". Figure 6.11.3.2-1
shows the Update Subscription interaction and table 6.11.3.2-1 describes the request body and possible responses.

Figure 6.11.3.2-1: Update Subscription interaction

Table 6.11.3.2-1: Patch Subscription request body and possible responses

Request Body Data Type Cardinality Remarks
Subscription Fragment 1 Subscription Fragment including id, type and any other

subscription field to be changed
Response Body Data Type Cardinality Response Codes Remarks

N/A

204 No Content

ProblemDetails [10] 0..1 400 Bad Request It is used to indicate that the request
or its content is incorrect, see
clause 6.3.2.
In the returned ProblemDetails
structure, the "detail" attribute should
convey more information about the
error.

ProblemDetails [10] 0..1 404 Not Found It is used when a client provided a
subscription identifier (URI) not known
to the system, see clause 6.3.2.

6.11.3.3 DELETE

This method is associated to the operation "Delete Subscription" and shall exhibit the behaviour defined by clause 5.8.5.
The subscription identifier is the value of the resource URI variable "subscriptionId". Figure 6.11.3.3-1 shows the
Delete Subscription interaction and table 6.11.3.3-1 describes the request body and possible responses.

ETSI

ETSI GS CIM 004 V1.1.2 (2020-06)92

Figure 6.11.3.3-1: Delete Subscription interaction

Table 6.11.3.3-1: Delete Subscription request body and possible responses

Request Body Data Type Cardinality Remarks
N/A

Response Body Data Type Cardinality Response Codes Remarks
N/A 204 No Content
ProblemDetails [10] 0..1 400 Bad Request It is used to indicate that the request or its

content is incorrect, see clause 6.3.2.
In the returned ProblemDetails structure,
the "detail" attribute should convey more
information about the error.

ProblemDetails [10] 0..1 404 Not Found It is used when a client provided a
subscription identifier (URI) not known to
the system, see clause 6.3.2.

6.12 Resource: csourceSubscriptions

6.12.1 Description

This resource represents a collection of context source registration subscriptions known to a NGSI-LD system.

6.12.2 Resource definition

Resource URI:

• /csourceSubscriptions

6.12.3 Resource methods

6.12.3.1 POST

This method is bound to the operation "Create Context Source Registration Subscription" and shall exhibit the
behaviour defined by clause 5.11.8, taking the context source registration subscription to be created from the HTTP
request input payload. Figure 6.12.3.1-1 shows the Create Context Source Registration Subscription interaction and
table 6.12.3.1-1 describes the request body and possible responses.

ETSI

ETSI GS CIM 004 V1.1.2 (2020-06)93

Figure 6.12.3.1-1: Create Context Source Registration Subscription interaction

Table 6.12.3.1-1: Post Context Source Registration Subscription request body
and possible responses

Request Body Data Type Cardinality Remarks
Subscription 1 Payload body in the request contains a JSON-LD object which

represents the context source registration subscription that is to
be created.

Response Body Data Type Cardinality Response Codes Remarks
N/A N/A 201 Created Upon success, the HTTP response shall

include a "Location" HTTP header that
contains the resource URI of the created
context source registration subscription
resource.

ProblemDetails [10] 0..1 400 Bad Request It is used to indicate that the request or its
content is incorrect see clause 6.3.2.
In the returned ProblemDetails structure,
the "detail" attribute should convey more
information about the error.

ProblemDetails [10] 0..1 409 Already Exists It is used to indicate that the context
source registration subscription already
exists, see clause 6.3.2.
In the returned ProblemDetails structure,
the "detail" attribute should convey more
information about the error.

6.12.3.2 GET

This method is associated to the operation "Query Context Source Registration Subscriptions" and shall exhibit the
behaviour defined by clause 5.11.5, providing the context source registration subscription data as part of the HTTP
response output payload. Figure 6.12.3.2-1 shows the Query Context Source Registration Subscriptions interaction.

Figure 6.12.3.2-1: Query Context Source Registration Subscriptions interaction

The query parameters that shall be supported by implementations are those defined in table 6.12.3.2-1 and
table 6.12.3.2-2 describes the request body and possible responses.

ETSI

ETSI GS CIM 004 V1.1.2 (2020-06)94

Table 6.12.3.2-1: Query parameters

Name Data type Cardinality Remarks
limit Number 0..1 Maximum number of subscriptions to be retrieved

Table 6.12.3.2-2: Get Context Source Registration Subscriptions request body
and possible responses

Request Body Data Type Cardinality Remarks
N/A

Response Body Data Type Cardinality Response Codes Remarks
Subscription[] 1 200 OK Upon success, a response body

containing a list of context source
registration subscriptions.

ProblemDetails [10] 0..1 400 Bad Request It is used to indicate that the request
or its content is incorrect see
clause 6.3.2.
In the returned ProblemDetails
structure, the "detail" attribute should
convey more information about the
error.

6.13 Resource: csourceSubscriptions/{subscriptionId}

6.13.1 Description

This resource represents a context source registration subscription known to a NGSI-LD system.

6.13.2 Resource definition

Resource URI:

• /csourceSubscriptions/{subscriptionId}

Resource URI variables for this resource are defined in table 6.13.2-1.

Table 6.13.2-1: URI variables

Name Definition
subscriptionId Id (URI) of the concerned context source registration subscription

6.13.3 Resource methods

6.13.3.1 GET

This method is associated to the operation "Retrieve Context Source Registration Subscription" and shall exhibit the
behaviour defined by clause 5.11.4. The subscription identifier is the value of the resource URI variable
"subscriptionId". Figure 6.13.3.1-1 shows the Retrieve Context Source Registration interaction and table 6.13.3.1-1
describes the request body and possible responses.

ETSI

ETSI GS CIM 004 V1.1.2 (2020-06)95

Figure 6.13.3.1-1: Retrieve Context Source Registration Subscription interaction

Table 6.13.3.1-1: Get Context Source Registration Subscription request body and possible responses

Request Body Data Type Cardinality Remarks
N/A

Response Body Data Type Cardinality Response Codes Remarks
Subscription 1 200 OK Upon success, a response body containing

the JSON-LD representation of the target
context source registration subscription.

ProblemDetails [10] 0..1 400 Bad Request It is used to indicate that the request or its
content is incorrect, see clause 6.3.2.
In the returned ProblemDetails structure,
the "detail" attribute should convey more
information about the error.

ProblemDetails [10] 0..1 404 Not Found It is used when a client provided a
subscription identifier (URI) not known to
the system, see clause 6.3.2.

6.13.3.2 PATCH

This method is associated to the operation "Update Context Source Registration Subscription" and shall exhibit the
behaviour defined by clause 5.11.3. The subscription identifier is the value of the resource URI variable
"subscriptionId". Figure 6.13.3.2-1 shows the Update Context Source Registration Subscription interaction and
table 6.13.3.2-1 describes the request body and possible responses.

Figure 6.13.3.2-1: Update Context Source Registration Subscription interaction

ETSI

ETSI GS CIM 004 V1.1.2 (2020-06)96

Table 6.13.3.2-1: Patch Context Source Registration Subscription request body
and possible responses

Request Body Data Type Cardinality Remarks
Subscription Fragment 1 Subscription Fragment including id, type and any other

context source registration subscription field to be changed
Response Body Data Type Cardinality Response Codes Remarks

N/A 204 No Content
ProblemDetails [10] 0..1 400 Bad Request It is used to indicate that the request

or its content is incorrect, see
clause 6.3.2.
In the returned ProblemDetails
structure, the "detail" attribute should
convey more information about the
error.

ProblemDetails [10] 0..1 404 Not Found It is used when a client provided a
subscription identifier (URI) not known
to the system, see clause 6.3.2.

6.13.3.3 DELETE

This method is associated to the operation "Delete Context Source Registration Subscription" and shall exhibit the
behaviour defined by clause 5.11.6. The subscription identifier is the value of the resource URI variable
"subscriptionId". Figure 6.13.3.3-1 shows the Delete Context Source Registration Subscription interaction and
table 6.13.3.3-1 describes the request body and possible responses.

Figure 6.13.3.3-1: Delete Context Source Registration Subscription interaction

Table 6.13.3.3-1: Delete Context Source Registration Subscription request body
and possible responses

Request Body Data Type Cardinality Remarks
N/A

Response Body Data Type Cardinality Response Codes Remarks
N/A 204 No Content
ProblemDetails [10] 0..1 400 Bad Request It is used to indicate that the request or its

content is incorrect, see clause 6.3.2.
In the returned ProblemDetails structure,
the "detail" attribute should convey more
information about the error.

ProblemDetails [10] 0..1 404 Not Found It is used when a client provided a
subscription identifier (URI) not known to
the system, see clause 6.3.2.

ETSI

ETSI GS CIM 004 V1.1.2 (2020-06)97

Annex A (normative):
NGSI-LD identifier considerations

A.1 Introduction
The purpose of identifiers is to allow uniquely identifying NGSI-LD elements (Entities, Context Subscriptions or
Context Source Registrations) within an NGSI-LD system. This annex is intended to clarify the different issues around
the design of identifiers in NGSI-LD.

A.2 Entity identifiers
In order to enable the participation of NGSI-LD in linked data scenarios, all Entities are identified by URIs. If those
URIs are expected to participate in external linked data relationships they should be dereferenceable.

It is noteworthy that the identifier from the point of view of NGSI-LD is different from the inherent identifier that a
specific Entity may have. For instance, an NGSI-LD Entity of Type Vehicle may have a Property named
licencePlateNumber, which it is actually a unique identifier from the point of view of the Entity domain, as it uniquely
identifies the specific vehicle instance. However, from the point of view of the NGSI-LD system, it may have another
identifier which might or might not include such licence plate number identifier.

A.3 NGSI-LD namespace
NGSI-LD defines a specific URN [9] namespace intended to help API users to design readable, clean and simple
identifiers. As it is based on URNs, the usage of this identification approach is not recommended when dereferenceable
URIs are needed (fully-fledged linked data scenarios).

The referred namespace is defined as follows (to be registered with IANA):

• Namespace identifier: NID = "ngsi-ld"

• Namespace specific string: NSS = EntityTypeName ":" EntityIdentificationString

EntityTypeName shall be an Entity Type Name which can be expanded to a URI as per the @context.

EntityIdentificationString shall be a string that allows uniquely identifying the subject Entity in combination with the

other items being part of the NSS.

EXAMPLE: urn:ngsi-ld:Person:28976543.

It is recommended that applications use this URN namespace when applicable.

ETSI

ETSI GS CIM 004 V1.1.2 (2020-06)98

Annex B (normative):
Core NGSI-LD @context definition
Below it is the definition of the Core NGSI-LD @context which shall be supported by implementations.

Such definition has been tested using [i.7].

{
"id": "@id",
"type": "@type",
"value": "http://uri.etsi.org/ngsi-ld/hasValue",
"object": {
 "@id": "http://uri.etsi.org/ngsi-ld/hasObject",
 "@type":"@id"
},
"Property": "http://etsi.org/nsgi-ld/Property",
"Relationship": "http://uri.etsi.org/ngsi-ld/Relationship",
"DateTime": "http://uri.etsi.org/ngsi-ld/DateTime",
"Date": "http://uri.etsi.org/ngsi-ld/Date",
"Time": "http://uri.etsi.org/ngsi-ld/Time",
"createdAt": {
 "@id": "http://uri.etsi.org/ngsi-ld/createdAt",
 "@type": "DateTime"
},
"modifiedAt": {
 "@id": "http://uri.etsi.org/ngsi-ld/modifiedAt",
 "@type": "DateTime"
},
"observedAt": {
 "@id": "http://uri.etsi.org/ngsi-ld/observedAt",
 "@type": "DateTime"
},
"unitCode": "http://uri.etsi.org/ngsi-ld/unitCode",
"location": "http://uri.etsi.org/ngsi-ld/location",
"observationSpace": "http://uri.etsi.org/ngsi-ld/observationSpace",
"operationSpace": "http://uri.etsi.org/ngsi-ld/operationSpace",
"GeoProperty": "http://uri.etsi.org/ngsi-ld/GeoProperty",
"TemporalProperty": "http://uri.etsi.org/ngsi-ld/TemporalProperty",
"ContextSourceRegistration": "http://uri.etsi.org/ngsi-ld/ContextSourceRegistration",
"Subscription": "http://uri.etsi.org/ngsi-ld/Subscription",
"Notification": "http://uri.etsi.org/ngsi-ld/Notification",
"ContextSourceNotification": "http://uri.etsi.org/ngsi-ld/ContextSourceNotification",
"title": "http://uri.etsi.org/ngsi-ld/title",
"detail": "http://uri.etsi.org/ngsi-ld/detail",
"idPattern": "http://uri.etsi.org/ngsi-ld/idPattern",
"name": "http://uri.etsi.org/ngsi-ld/name",
"description": "http://uri.etsi.org/ngsi-ld/description",
"information": "http://uri.etsi.org/ngsi-ld/information",
"timestamp": "http://uri.etsi.org/ngsi-ld/timestamp",
"expires": {
 "@id": "http://uri.etsi.org/ngsi-ld/expires",
 "@type": "DateTime"
},
"endpoint": "http://uri.etsi.org/ngsi-ld/endpoint",
"entities": "http://uri.etsi.org/ngsi-ld/entities",
"properties": {
 "@id": "http://uri.etsi.org/ngsi-ld/properties",
 "@type": "@id"
},
"relationships": {
 "@id": "http://uri.etsi.org/ngsi-ld/relationships",
 "@type": "@id"
},
"start": {
 "@id": "http://uri.etsi.org/ngsi-ld/start",
 "@type": "DateTime"
},
"end": {
 "@id": "http://uri.etsi.org/ngsi-ld/end",
 "@type": "DateTime"
},
"watchedAttributes":{
 "@id": "http://uri.etsi.org/ngsi-ld/watchedAttributes",
 "@type": "@id"
},

ETSI

ETSI GS CIM 004 V1.1.2 (2020-06)99

"timeInterval": "http://uri.etsi.org/ngsi-ld/timeInterval",
"q": "http://uri.etsi.org/ngsi-ld/q",
"geoQ": "http://uri.etsi.org/ngsi-ld/geoQ",
"notification": "http://uri.etsi.org/ngsi-ld/notification",
"status": "http://uri.etsi.org/ngsi-ld/status",
"throttling": "http://uri.etsi.org/ngsi-ld/throttling",
"geometry": "http://uri.etsi.org/ngsi-ld/geometry",
"coordinates": "http://uri.etsi.org/ngsi-ld/coordinates",
"georel": "http://uri.etsi.org/ngsi-ld/georel",
"attributes": {
 "@id": "http://uri.etsi.org/ngsi-ld/attributes ",
 "@type": "@id"
},
"format": "http://uri.etsi.org/ngsi-ld/format",
"timesSent": "http://uri.etsi.org/ngsi-ld/timesSent",
"lastNotification":{
 "@id": "http://uri.etsi.org/ngsi-ld/lastNotification",
 "@type": "DateTime"
},
"lastFailure":{
 "@id": "http://uri.etsi.org/ngsi-ld/lastFailure ",
 "@type": "DateTime"
},
"lastSuccess":{
 "@id": "http://uri.etsi.org/ngsi-ld/lastSuccess",
 "@type": "DateTime"
},
"uri": "http://uri.etsi.org/ngsi-ld/uri",
"accept": "http://uri.etsi.org/ngsi-ld/accept",
"subscriptionId": {
 "@id": "http://uri.etsi.org/ngsi-ld/subscriptionId",
 "@type": "@id"
},
"notifiedAt":{
 "@id": "http://uri.etsi.org/ngsi-ld/notifiedAt",
 "@type": "DateTime"
},
"data": "http://uri.etsi.org/ngsi-ld/data",
"triggerReason": "http://uri.etsi.org/ngsi-ld/triggerReason"
}

NOTE: Implementers can take advantage of the "@vocab" JSON-LD keyword to provide a terser representation
of the Core @context.

ETSI

ETSI GS CIM 004 V1.1.2 (2020-06)100

Annex C (informative):
Examples of using the API

C.1 Introduction
This annex is informative and is intended to show in action the JSON-LD representation defined by NGSI-LD.

C.2 Entity Representation

C.2.1 Property Graph
Figure C.2.1-1 shows a diagram representing a property graph to be used for the examples discussed in this clause.

Figure C.2.1-1: Reference example

As per the algorithms described above and as per the rules for generating the JSON-LD representation of NGSI-LD
entities the above graph will result in the following JSON-LD representations. The syntax has been checked using the
JSON-LD Playground tool [i.5].

ETSI

ETSI GS CIM 004 V1.1.2 (2020-06)101

C.2.2 Vehicle Entity
Below there is a representation of an Entity of Type "Vehicle". It can be observed that the @context is composed of
different parts, namely the Core @context and several vocabulary-specific @contexts.

It is noteworthy that the @context corresponding to the Parking domain is included as it is referenced through the
isParked Relationship.

{
 "id": "urn:ngsi-ld:Vehicle:A4567",
 "type": "Vehicle",
 "brandName": {
 "type": "Property",
 "value": "Mercedes"
 },
 "isParked": {
 "type": "Relationship",
 "object": "urn:ngsi-ld:OffStreetParking:Downtown1",
 "observedAt": "2017-07-29T12:00:04",
 "providedBy": {
 "type": "Relationship",
 "object": "urn:ngsi-ld:Person:Bob"
 }
 },
 "@context": [
 "http://uri.etsi.org/ngsi-ld/coreContext.jsonld",
 "http://example.org/cim/commonTerms.jsonld",
 "http://example.org/cim/vehicle.jsonld",
 "http://example.org/cim/parking.jsonld"
]
}

Simplified representation

The simplified representation is a collapsed representation of an Entity, which focuses on Property Values and
Relationship objects present at the first level of the graph.

{
 "id": "urn:ngsi-ld:Vehicle:A4567",
 "type": "Vehicle",
 "brandName": "Mercedes",
 "isParked": "urn:ngsi-ld:OffStreetParking:Downtown1",
 "@context": [
 "http://uri.etsi.org/ngsi-ld/coreContext.jsonld",
 "http://example.org/cim/commonTerms.jsonld",
 "http://example.org/cim/vehicle.jsonld",
 "http://example.org/cim/parking.jsonld"
]
}

C.2.3 Parking Entity
Below there is a representation of an Entity of Type "OffStreetParking". It can be observed that the @context is
composed of two different elements, the Core one and the vocabulary-specific one.

{
 "id": "urn:ngsi-ld:OffStreetParking:Downtown1",
 "type": "OffStreetParking",
 "name": {
 "type": "Property",
 "value": "Downtown One"
 },
 "availableSpotNumber": {
 "type": "Property",
 "value": 121,
 "observedAt": "2017-07-29T12:05:02",
 "reliability": {
 "type": "Property",
 "value": 0.7
 },
 "providedBy": {
 "type": "Relationship",
 "object": "urn:ngsi-ld:Camera:C1"

ETSI

ETSI GS CIM 004 V1.1.2 (2020-06)102

 }
 },
 "totalSpotNumber": {
 "type": "Property",
 "value": 200
 },
 "location": {
 "type": "GeoProperty",
 "value": {
 "type": "Point",
 "coordinates": [-8.5, 41.2]
 }
 },
 "@context": [
 "http://uri.etsi.org/ngsi-ld/coreContext.jsonld",
 "http://example.org/cim/parking.jsonld"
]
}

Simplified representation

The Simplified Representation (a.k.a. keyValues) is a collapsed representation of an Entity, which focuses on Property
Values and Relationship objects present at the first level of the graph.

{
 "id": "urn:ngsi-ld:OffStreetParking:Downtown1",
 "type": "OffStreetParking",
 "name": "Downtown One",
 "availableSpotNumber": 121,
 "totalSpotNumber": 200,
 "location": {
 "type": "Point",
 "coordinates": [-8.5, 41.2]
 },
 "@context": [
 "http://uri.etsi.org/ngsi-ld/coreContext.jsonld",
 "http://example.org/cim/parking.jsonld"
]
}

C.2.4 @context
The disposition of the @context can be as an inline JSON object, as a dereferenceable URI or as a (multiple)
combination of both. In the examples above the @context is provided through several dereferenceable URIs. The
resulting @context (obtained by merging the content of the resource referenced by the referred URIs) is shown below.

NOTE 1: For brevity reasons the @context does not contain the API terms defined by clause 5.2.

NOTE 2: Some extra terms are defined because they will be used in examples later presented.

{
 "id": "@id",
 "type": "@type",
 "Property": "http://uri.etsi.org/ngsi-ld/Property",
 "Relationship": "http://uri.etsi.org/ngsi-ld/Relationship",
 "value": "http://uri.etsi.org/ngsi-ld/hasValue",
 "object": {
 "@type": "@id",
 "@id": "http://uri.etsi.org/ngsi-ld/hasObject"
 },
 "observedAt": {
 "@type": "http://uri.etsi.org/ngsi-ld/DateTime",
 "@id": "http://uri.etsi.org/ngsi-ld/observedAt"
 },
 "location": "http://uri.etsi.org/ngsi-ld/location",
 "GeoProperty": "http://uri.etsi.org/ngsi-ld/GeoProperty",
 "Vehicle": "http://example.org/vehicle/Vehicle",
 "brandName": "http://example.org/vehicle/brandName",
 "speed": "http://example.org/vehicle/speed",
 "isParked": {
 "@type": "@id",
 "@id": "http://example.org/common/isParked"
 },
 "OffStreetParking": "http://example.org/parking/OffStreetParking",

ETSI

ETSI GS CIM 004 V1.1.2 (2020-06)103

 "availableSpotNumber": "http://example.org/parking/availableSpotNumber",
 "totalSpotNumber": "http://example.org/parking/totalSpotNumber",
 "isNextToBuilding": {
 "@type": "@id",
 "@id": "http://example.org/common/isNextToBuilding"
 },
 "reliability": "http://example.org/common/reliability",
 "providedBy": {
 "@type": "@id",
 "@id": "http://example.org/common/providedBy"
 },
 "name": "http://example.org/common/name"
}

C.3 Context Source Registration
Below there is an example representation of a Context Source Registration. It makes use of the @context formerly
described.

{
 "id": "urn:ngsi-ld:ContextSourceRegistration:csr1a3456",
 "type": "ContextSourceRegistration",
 "information": [
 {
 "entities": [
 {
 "id": "urn:ngsi-ld:Vehicle:A456",
 "type": "Vehicle"
 }
],
 "properties": ["brandName","speed"],
 "relationships": ["isParked"]
 },
 {
 "entities": [
 {
 "idPattern": ".*downtown$",
 "type": "OffStreetParking"
 },
 {
 "idPattern": ".*47$",
 "type": "OffStreetParking"
 }
],
 "properties": ["availableSotNumber","totalSpotNumber"],
 "relationships": ["isNextToBuilding"]
 }
],
 "endpoint": "http://my.csource.org:1026",
 "location": {
 "type": "Polygon",
 "coordinates": [
 [[100.0, 0.0], [101.0, 0.0], [101.0, 1.0],
 [100.0, 1.0], [100.0, 0.0]]]
 },
 "timestamp": {
 "start": " 2017-11-29T14:53:15"
 },
 "@context": [
 "http://uri.etsi.org/ngsi-ld/coreContext.jsonld",
 "http://example.org/cim/commonTerms.jsonld",
 "http://example.org/cim/vehicle.jsonld",
 "http://example.org/cim/parking.jsonld"
]
}

The Registration is referring to a Context Source capable of providing information from Entities of type Vehicle and
OffStreetParking, meeting certain id requirements. More concretely, it can only provide the referenced Properties and
Relationships. In addition, the Registration example covers a particular geographical area and a temporal scope which
starts at a point in time.

ETSI

ETSI GS CIM 004 V1.1.2 (2020-06)104

C.4 Context Subscription
Below there is an example of a Context Subscription. It makes use of the @context formerly described.

{
 "id": "urn:ngsi-ld:Subscription:mySubscription",
 "type": "Subscription",
 "entities": [
 {
 "type": "Vehicle"
 }
],
 "watchedAttributes": ["speed"],
 "q": "speed>50",
 "geoQ": {
 "georel": "near;maxDistance==2000",
 "geometry": "Point",
 "coordinates": [-1,100]
 },
 "notification": {
 "attributes": ["speed"],
 "format": "keyValues",
 "endpoint": {
 "uri": "http://my.endpoint.org/notify",
 "accept": "application/json"
 }
 },
 "@context": [
 "http://uri.etsi.org/ngsi-ld/coreContext.jsonld",
 "http://example.org/cim/vehicle.jsonld"
]
}

The subject of the Context Subscription are Entities of Type Vehicle which speed is greater than 50, and located close to
a certain area defined by a reference spatial point. Every time the speed (watched Attribute) of a concerned vehicle,
changes, a new notification (including the new speed value) will be received in the specified endpoint.

C.5 HTTP REST API Examples

C.5.1 Introduction
This clause introduces some simple usage examples of the NGSI-LD API (HTTP REST binding). They are not intended
to be exhaustive but just a sample for helping readers to understand better the present document. Nonetheless, it is the
intention of ISG CIM to publish in the near future a Developer's Primer with much more examples.

C.5.2 Create Entity of Type Vehicle

C.5.2.1 HTTP Request

POST /ngsi-ld/entities/

Content-Type: application/ld+json

Content-Length: 556

<Insert Here JSON-LD Content from A.2.1>

C.5.2.2 HTTP Response

201 Created

Location: /ngsi-ld/entities/urn:ngsi-ld:Vehicle:A4567

ETSI

ETSI GS CIM 004 V1.1.2 (2020-06)105

C.5.3 Query Entities

C.5.3.1 Introduction

List only the Entities of type Vehicle which have a brand name that is not "Mercedes". List only the brand name and
provide the data in the NGSI-LD Simplified Format.

C.5.3.2 HTTP Request

GET /ngsi-ld/entities/?type=Vehicle&q=brandName!=Mercedes&options=keyValues

Accept: application/ld+json

Link: <http://example.org/cim/aggregatedContext.jsonld>; rel="http://www.w3.org/ns/json-ld#context";
type="application/ld+json"

C.5.3.3 HTTP Response

200 OK

Content-Type: application/ld+json

[
 {
 "id": "urn:ngsi-ld:Vehicle:B9211",
 "type": "Vehicle",
 "brandName": "Volvo",
 "@context": [
 "http://uri.etsi.org/ngsi-ld/coreContext.jsonld",
 "http://example.org/cim/vehicle.jsonld"
]
 }
]

ETSI

ETSI GS CIM 004 V1.1.2 (2020-06)106

Annex D (informative):
Transformation Algorithms

D.1 Introduction
These algorithms are informative but NGSI-LD implementations should aim at either implementing them as they are
described here or devising similar algorithms which take exactly the same input and provides exactly the same output
(or an equivalent one as per the JSON-LD specification [2]).

D.2 Algorithm for transforming an NGSI-LD Entity into a
JSON-LD document (ALG1)

This algorithm takes as input a NGSI-LD graph which top level node is a particular Entity and returns as output a
JSON-LD document which represents all the data associated to the entity. The JSON-LD document (and its associated
@context) corresponds to a representation of the Entity in JSON-LD as per the NGSI-LD Information Model.

NOTE: An early implementation of this algorithm can be found at [i.5].

Let:

• G be a graph defined as follows:

- Let N be G's top level node.

- N is an Entity instance of type T. Type Name is "AliasT", N's identifier is I.

- N has 0 or more associated Property. Each Property (Psi) is defined as follows:

 Property type identifier is Pi.

 Property Name is "AliasPi".

 Property Value is Vi.

 Property Value's associated data type is Di.

- N is the subject of 0 or more Relationship. Each Relationship is defined as follows:

 Relationship type identifier is Ri.

 Relationship nNme is "AliasRi".

 Relationship target object identifier is Robji.

• O be a JSON object initialized to the empty object ({}).

• C be a JSON-LD @context initialized as described by annex B.

The algorithm should run as follows, provided all the preconditions defined above are satisfied:

1) Add to C a new member <"AliasT", T>.

2) Add to O two new members:

a) <"id", I>.

b) <"type", "AliasT">.

ETSI

ETSI GS CIM 004 V1.1.2 (2020-06)107

3) For each Property Psi (Pi, "AliasP", Vi, Di) associated to N:

a) Run Algorithm ALG1.1 taking the following inputs:

 Ps → Psi.

 O → O.

 C → C.

4) For each Relationship Rs (Ri, AliasRi, Robji) associated to N:

a) Run Algorithm ALG1.2 taking the following inputs:

 Rs → Rsi.

 O → O.

 C → C.

5) Return (O, C) and end of the algorithm.

D.3 Algorithm for transforming a NGSI-LD Property into
JSON-LD (ALG1.1)

Let Ps be the Property that has to be transformed. It is defined by (P, "AliasP", V, D), where P denotes a Property Type
Id, "AliasP" is the Property Name, V is the Property Value and D is the Property Value's data type.

Ps might be associated to extra Properties or Relationships.

Let O be the output JSON-LD object and C the associated JSON-LD context:

1) Execute the following steps:

a) Add a new member to O with key "AliasP" and value an object structure, let it be named Op, and
defined as follows:

 <"type", "Property">

 If D is not a native JSON data type add a new member to Op with name "value" and which value
has to be an object structure as follows:

1) <"@type", D>.

2) <"@value", V>.

 Else If D is a native JSON data type add a new member to Op as follows:

1) <"value", V>.

b) Add a new member to C as follows:

 <"AliasP", P>.

c) For each Property associated to Ps (Pss) recursively run the present algorithm (ALG1.1) taking the
following inputs:

 Ps → Pss.

 O → Op.

 C → C.

ETSI

ETSI GS CIM 004 V1.1.2 (2020-06)108

d) For each Relationship associated to Ps (Rss) run algorithm ALG1.2 taking the following inputs:

 Rs → Rss.

 O → Op.

 C → C.

2) Return (O,C) and end of the algorithm.

D.4 Algorithm for transforming a NGSI-LD Relationship
into JSON-LD (ALG1.2)

Let Rs be the Relationship that has to be transformed. It is defined by (R, "AliasR", Robj), where R denotes a
Relationship Type Id, "AliasR" is the Relationship's Name and Robj is the identifier of the target object of the
Relationship.

Rs might be associated to extra Properties or Relationships.

Let O be the output JSON-LD object and C the current JSON-LD context:

1) Execute the following statements:

a) Add a new member to O with key "AliasR" and value an object structure, let it be named Or, and
defined as follows:

 <"object", Robj>.

 <"type", "Relationship">.

b) For each Property associated to Rs (Pss) run the algorithm ALG1.1 taking the following inputs:

 Ps → Pss.

 O → Or.

 C → C.

c) For each Relationship associated to Rs (Rss) recursively run the present algorithm ALG1.2 taking the
following inputs:

 Rs → Rss.

 O → Or.

 C → C.

2) Return (O,C) and end of the algorithm.

ETSI

ETSI GS CIM 004 V1.1.2 (2020-06)109

Annex E (informative):
RDF-compatible specification of NGSI-LD meta-model

E.1 NGSI-LD Terms and categories: definitions
In addition to the definitions given in clause 3.1 of the present document, and in the context of this annex, further terms
are defined as follows:

• NGSI-LD Property Type: An NGSI-LD Property Type is used to categorize an NGSI-LD Property as
belonging to a class of similar properties. An NGSI-LD Property Type is identified by a URI.

• NGSI-LD Relationship Type: An NGSI-LD Relationship Type is used to categorize an NGSI-LD
Relationship as belonging to a class of similar relationships. A NGSI-LD Relationship Type is identified by a
URI.

E.2 Bridging Property graphs and RDF graphs
Superficially, RDF graphs could be seen as an alternative way to capture context information cast as a graph, but they
start from a very different premise, placing the emphasis on semantic rather than structural information, mixing
inter-individual with individual-to-class (instance to category) semantics. RDF is a supremely parsimonious meta-
model, defining only, from first-order predicate logic, a basic (subject, predicate, object) triple as building block of a
labelled graph, where a generic notion of property (instantiated in a predicate) does not distinguish relationships with
property graph (though OWL does make a similar distinction object properties and data properties). RDF and the
associated ontology languages (RDFS/OWL) do natively support all kinds of semantics but they cannot directly express
more complex constructs that go beyond the expressivity of fist-order logic, such as properties of properties, properties
of relationships and their derivatives, which a graph database natively supports. Property graphs are the implicit semi-
formal data models underlying most graph databases, such as Neo4J, OrientDB, etc. They have gained widespread
following as such, more in industry than in academia. They make it possible to attach properties to relationships, which
RDF does not directly support, but they lack the standardization and formal underpinnings of RDF and do not
interoperate directly with linked data and other RDF datasets. Also, they do not lend themselves to reasoning with RDF-
based reasoning tools or querying with standard query languages such as SPARQL. Several solutions have been
proposed to convert property graphs to RDF.

Reification is the default way to support this kind of derivative graphs, coming from property graphs, in RDF. Standard
RDF reification [i.8] defines a new resource (with type rdf:statement) that encompasses a predicate jointly with its
associated subject and object, i.e. a triple) This new statement resource is linked back to the original subject, object and
predicate of the statement through a trio of properties with types rdf:subject, rdf:object and rdf:predicate, respectively.
A total of 4 additional statements (corresponding to the infamous "reification quad") are thus required to fully define the
reified statement as a resource, this only in order to make this resource the subject of other statement, making this a very
cumbersome and heavyweight solution. Reification by way of blank nodes is a simpler way to achieve this:

Assuming that it is desired to reify statement 1, given as follows:

[StreetA hasState  "30% busy"],

in order to make it the subject of another statement:

[statement 1] reliability  "90%"

then it is only necessary to add a blank node:

StreetA  hasState _blank_node

_blank_node  reliability "90%"

_blank_node  hasValue  "30% busy"

Moreover, the statement corresponding to the "reliability" property may further be reified in order to express more
information concerning it.

ETSI

ETSI GS CIM 004 V1.1.2 (2020-06)110

This solution is especially convenient when the graph is serialized with JSON-LD because blank nodes do not explicitly
appear in the textual serialized description, and actually show up only when it is represented as a graph. It is thus
possible for a developer to generate the JSON-LD payload of an API in a form that is very similar to what he would
have generated in plain JSON, or in the previous version of the OMA NGSI data model [i.3].

E.3 Tentative formal definition of NGSI-LD information
model

E.3.1 Introduction
The NGSI-LD meta-model is defined as an RDF/RDFS/OWL ontology. Semantically, the meta-model is divided into
two parts (accounting to two abstraction levels): Core meta-model and Cross-domain meta-model.

E.3.2 Core Meta-Model
The core meta-model provides the ontological definition of the primitive classes: Entity, Property, Relationship, and
Value. These classes are the representative actors from the property graph model.

Entity, Property, and Relationship are classes, and are direct subclasses of the rdfs:Resourse class.

Value is a class whose instances are the only instances that can be associated to Properties. The class Value is disjoint
with the Entity, the Property, and the Relationship classes. In principle, Value may be an rdfs:Literal, but may be
also another class of nodes that is designed in the cross-domain meta-model (like Geomotry which is a GeoJSON
expression as defined in this API document), or other classes that may be defined in a domain-specific meta-model by
some NGSI-LD user. Thus, the only intrinsic restrictions on Value is that it is the rdfs:range of all properties, and it can
be any class that is designed to be a value given that it is not an Entity, a Property, nor a Relationship. Further
restrictions are defined in our meta-model on individual properties, like restricting the rdfs:range of the location
property to be a Geometry value.

hasValue and hasObject are primitive RDF properties required by our adopted reification technique and
supplementary properties. The core meta-model diagram defines the rdfs:domain (orange arrow) and the rdfs:range
(green arrow) of each.

Figure E.3.2-1: NGSI-LD core meta-model diagram

E.3.3 Cross-Domain Meta-Model
The cross-domain meta-model provides definition of property types, relationship types, and value types that are
considered to be general yet common tools for any system that is using NGSI-LD.

A set of rules for property types is defined as illustrated below. (Example: observationSpace).

ETSI

ETSI GS CIM 004 V1.1.2 (2020-06)111

For each property type p:

• the following rules hold:

- p rdfs:subClassOf Property
(Either direct or by inference, i.e. p may also be defined as an rdfs:subClassOf some class which is a
subclass of Property.)

- p rdf:type p
(p is both a class which is the class of property blank node instances, and an instance of itself because it
is used as a property that links subjects to the property blank nodes)

- p owl:propertyChainAxiom (p hasValue)
(Since reification uses a supplementary property hasValue with Properties, a shortcut is allowed for
extracting data by only using the property p. This assertion means that any property p usage followed by
a hasValue usage is semantically equivalent to using p alone. This allows implicitly inferring the values
of properties without using the reification through blank nodes, but directly through the name of the
property when no other information is needed.)

• the following rules may hold: (where restrictions are needed):

- p rdfs:domain C (Where C is a subclass of Entity, Property, or Relationship)
(This limits the usage of p on a certain class of Entities, Properties, or Relationships)

- p rdfs:range V (Where V is a subclass of Value)
(This limits the values that can be associated with p)

Note that some properties in NGSI-LD never follow the reification technique. These properties are direct instances
(using rdf:type) of the class Property and they include: observedAt, createdAt, modifiedAt, start, end and unitCode.

Similar to property types, it is necessary to define the rules for relationship types.

For each relationship type r:

• the following rules hold:

- r rdfs:subClassOf Relationship
(Either direct or by inference, i.e. r may also be defined as an rdfs:subClassOf some class which is a
subclass of Relationship.)

- r rdf:type r
(r is both a class which is the class of relationship blank node instances, and an instance of itself because
it is used as a property that links subjects to the relationship blank nodes)

- r owl:propertyChainAxiom (r hasObject)
(Since reification uses a supplementary property hasObject with Relationships, it is allowed to define a
shortcut for extracting data by only using the relationship r. This assertion means that any relationship r
usage followed by a hasObject usage is semantically equivalent to using r alone. This allows implicitly
inferring the values of relationships without using the reification through blank nodes, but directly
through the name of the relationship when no other information is needed.)

• the following rules may hold: (where restrictions are needed):

- r rdfs:domain C1 (Where C1 is a subclass of Entity, Property, or Relationship)
(This limits the usage of r on a certain class of Entities, Properties, or Relationships)

- r rdfs:range C2 (Where C2 is a subclass of Entity)
(This limits the Entities that can be associated with r)

ETSI

ETSI GS CIM 004 V1.1.2 (2020-06)112

Figure E.3.3-1: NGSI-LD cross-domain meta-model diagram

E.4 Example
Figure E.4-1 shows a simple example, with the corresponding categories defined, reified according to the method
suggested.

Figure E.4-1: NGSI-LD Example

ETSI

ETSI GS CIM 004 V1.1.2 (2020-06)113

E.5 Complete Ontology in Turtle RDF Syntax
@prefix : <http://cim.example.org/cim-meta-model#> .
@prefix owl: <http://www.w3.org/2002/07/owl#> .
@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .
@prefix xml: <http://www.w3.org/XML/1998/namespace> .
@prefix xsd: <http://www.w3.org/2001/XMLSchema#> .
@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#> .
@base <http://cim.example.org/cim-meta-model> .

<http://cim.example.org/cim-meta-model> rdf:type owl:Ontology .

Object Properties

http://cim.example.org/cim-meta-model#coordinates
:coordinates rdf:type owl:ObjectProperty .

http://cim.example.org/cim-meta-model#hasObject
:hasObject rdf:type owl:ObjectProperty ;
 rdfs:domain :Relationship ;
 rdfs:range :Entity .

http://cim.example.org/cim-meta-model#hasValue
:hasValue rdf:type owl:ObjectProperty ;
 rdfs:domain :Property ;
 rdfs:range :Value .

http://cim.example.org/cim-meta-model#location
:location rdf:type owl:ObjectProperty ;
 rdfs:range :Geometry ;
 owl:propertyChainAxiom (:location
 :hasValue
) .

http://cim.example.org/cim-meta-model#observationSpace
:observationSpace rdf:type owl:ObjectProperty ;
 rdfs:range :Geometry ;
 owl:propertyChainAxiom (:observationSpace
 :hasValue
) .

http://cim.example.org/cim-meta-model#operationSpace
:operationSpace rdf:type owl:ObjectProperty ;
 rdfs:range :Geometry ;
 owl:propertyChainAxiom (:operationSpace
 :hasValue
) .

http://www.w3.org/2000/01/rdf-schema#domain
rdfs:domain rdf:type owl:ObjectProperty .

http://www.w3.org/2000/01/rdf-schema#range
rdfs:range rdf:type owl:ObjectProperty .

Data properties

http://cim.example.org/cim-meta-model#createdAt
:createdAt rdf:type owl:DatatypeProperty ;
 rdfs:range xsd:dateTime .

http://cim.example.org/cim-meta-model#end
:end rdf:type owl:DatatypeProperty ;
 rdfs:domain :TimeInterval ;

ETSI

ETSI GS CIM 004 V1.1.2 (2020-06)114

 rdfs:range xsd:dateTime .

http://cim.example.org/cim-meta-model#modifiedAt
:modifiedAt rdf:type owl:DatatypeProperty ;
 rdfs:range xsd:dateTime .

http://cim.example.org/cim-meta-model#observedAt
:observedAt rdf:type owl:DatatypeProperty ;
 rdfs:range xsd:dateTime .

http://cim.example.org/cim-meta-model#start
:start rdf:type owl:DatatypeProperty ;
 rdfs:domain :TimeInterval ;
 rdfs:range xsd:dateTime .

http://cim.example.org/cim-meta-model#unitCode
:unitCode rdf:type owl:DatatypeProperty ;
 rdfs:range xsd:string .

Classes

http://cim.example.org/cim-meta-model#Entity
:Entity rdf:type owl:Class ;
 rdfs:subClassOf rdfs:Resource ;
 owl:disjointWith :Value .

http://cim.example.org/cim-meta-model#Geolocation
:Geolocation rdf:type owl:Class ;
 rdfs:subClassOf :Property .

http://cim.example.org/cim-meta-model#Geometry
:Geometry rdf:type owl:Class ;
 rdfs:subClassOf :Value .

http://cim.example.org/cim-meta-model#LineString
:LineString rdf:type owl:Class ;
 rdfs:subClassOf :Geometry .

http://cim.example.org/cim-meta-model#Point
:Point rdf:type owl:Class ;
 rdfs:subClassOf :Geometry .

http://cim.example.org/cim-meta-model#Polygon
:Polygon rdf:type owl:Class ;
 rdfs:subClassOf :Geometry .

http://cim.example.org/cim-meta-model#Property
:Property rdf:type owl:Class ;
 rdfs:subClassOf rdfs:Resource ;
 owl:disjointWith :Value .

http://cim.example.org/cim-meta-model#Relationship
:Relationship rdf:type owl:Class ;
 rdfs:subClassOf rdfs:Resource ;
 owl:disjointWith :Value .

http://cim.example.org/cim-meta-model#TemporalProperties
:TemporalProperties rdf:type owl:Class ;
 rdfs:subClassOf :Property .

http://cim.example.org/cim-meta-model#TimeInterval
:TimeInterval rdf:type owl:Class ;

ETSI

ETSI GS CIM 004 V1.1.2 (2020-06)115

 rdfs:subClassOf :Value .

http://cim.example.org/cim-meta-model#Value
:Value rdf:type owl:Class .

http://cim.example.org/cim-meta-model#end
:end rdf:type owl:Class ;
 rdfs:subClassOf :TemporalProperties .

http://cim.example.org/cim-meta-model#location
:location rdf:type owl:Class ;
 rdfs:subClassOf :Geolocation .

http://cim.example.org/cim-meta-model#observationSpace
:observationSpace rdf:type owl:Class ;
 rdfs:subClassOf :Geolocation .

http://cim.example.org/cim-meta-model#operationSpace
:operationSpace rdf:type owl:Class ;
 rdfs:subClassOf :Geolocation .

http://cim.example.org/cim-meta-model#start
:start rdf:type owl:Class ;
 rdfs:subClassOf :TemporalProperties .

http://www.w3.org/2000/01/rdf-schema#Resource
rdfs:Resource rdf:type owl:Class .

Individuals

http://cim.example.org/cim-meta-model#coordinates
:coordinates rdf:type owl:NamedIndividual ,
 :Geolocation .

http://cim.example.org/cim-meta-model#createdAt
:createdAt rdf:type owl:NamedIndividual ,
 :TemporalProperties .

http://cim.example.org/cim-meta-model#end
:end rdf:type owl:NamedIndividual ,
 :TemporalProperties .

http://cim.example.org/cim-meta-model#location
:location rdf:type owl:NamedIndividual ,
 :Geolocation .

http://cim.example.org/cim-meta-model#modifiedAt
:modifiedAt rdf:type owl:NamedIndividual ,
 :TemporalProperties .

http://cim.example.org/cim-meta-model#observationSpace
:observationSpace rdf:type owl:NamedIndividual ,
 :Geolocation .

http://cim.example.org/cim-meta-model#observedAt
:observedAt rdf:type owl:NamedIndividual ,
 :TemporalProperties .

http://cim.example.org/cim-meta-model#operationSpace
:operationSpace rdf:type owl:NamedIndividual ,
 :Geolocation .

ETSI

ETSI GS CIM 004 V1.1.2 (2020-06)116

http://cim.example.org/cim-meta-model#start
:start rdf:type owl:NamedIndividual ,
 :TemporalProperties .

http://cim.example.org/cim-meta-model#unitCode
:unitCode rdf:type owl:NamedIndividual ,
 :Property .

Generated by the OWL API (version 4.2.8.20170104-2310) https://github.com/owlcs/owlapi

ETSI

ETSI GS CIM 004 V1.1.2 (2020-06)117

Annex F (informative):
Gap analysis on the relationship of NGSI-LD and general
triple-based queries
To fully make use of the expressiveness of the NGSI-LD information model, the NGSI-LD API may continue to evolve
after the first release and support more query patterns by taking the general triple query pattern as a reference. In fact,
JSON-LD is a serialization format for linked data essentially based on the RDF meta model.

RDF data is organized as triples. A unit of RDF data is a triple, which is a statement with three constituent parts: a
subject, a predicate, and an object, such as sky (subject) is (predicate) blue (object). A statement is denoted as stat, and
represented as stat = <s, p, o>, where s, p, o are respectively the subject, predicate and object of the statement stat. The
triple patterns that the NGSI-LD system could benefit from consists of 1-wise pattern, 2-wise pattern and 3-wise
pattern, that respectively query 1, 2 or 3 elements of a statement. The triple query patterns are presented in table F-1.

Table F-1: Triple Query Patterns

Query Patterns Triple: <s, p, o>
1-wise <s, p, o> <s, p, o> <s, p, o>
2-wise <s, p, o> <s, p, o> <s, p, o>
3-wise <s, p, o>

In table F-1, seven query patterns are identified as basic triple query patterns, and the red letters represent the elements
that a query pattern addresses. For example, in the 1-wise pattern where a Context Consumer only indicates any subject
s, the Context Consumer can query all information related to a subject. For instance, if the subject is a person, Tom, by
such query all triples related to the person Tom will be returned. Particularly, in the 3-wise pattern where the Context
Consumer indicates the subject, predicate and object in one query, the Context Consumer can query if a specific
statement exists in the data base, and the returned result is the same triple if the specific statement exists, otherwise no
result is returned. The query patterns for RDF data, i.e. triple pattern queries, are able to answer any type of questions,
so that platforms can easily support various query requirements and federate different existing platforms.

Table F-2 identifies the mapping from the general concepts of subject, predicate and object, to concepts in the
NGSI-LD information model. For example, the predicate in NGSI-LD can be either a Relationship or a Property.
Particularly, data based on JSON-LD serialization hides the representation of blank nodes in triples; in a pure RDF-
based implementation with triple-stores, blank node can be either subject or object in table F-2.

Table F-2: NGSI-LD mapping with subject, predicate and object

Subject (s) Predicate (p) Object (o)
- Entity - Relationship

- Property
- Entity
- Value

Table F-3 presented the gap analysis summary between current NGSI-LD APIs and the general triple query patterns.
For each triple query pattern, the Context Consumer identifies one query example with specific value, and its mapping
to current NGSI-LD support.

From table F-3 it can be deduced 3 of 7 triple patterns are supported by the current NGSI-LD API. It is noteworthy that
the gap analysis is served as a first step for future improvement, which includes basic triple query patterns but does not
include all complex query patterns on graph model such as query on a sub graph structure, graph construction, etc.

The identified gaps in the present annex help to understand the potential enhancement to be made in the following
releases NGSI-LD APIs, in order to provide users with more flexible query interfaces. In later work it will be further
investigated the gaps identified and decide the partial or full patterns that to be supported by NGSI-LD APIs. Generally,
the choice will be made by balancing costs and benefits e.g. query flexibility, efficiency, usability and impact. Flexible
query patterns may influence the API performance depending on the real use cases; especially data characteristics and
architectural organization will be taken into account. In a dataset stored in a centralized architecture where entity
relationships and values barely change (e.g. birth information in a region), all patterns could be supported; on the other
hand, for one or more datasets organized in a distributed or federated architecture, and entity relationships or values that
frequently change, query patterns on entity values and relationships cannot be efficiently supported.

ETSI

ETSI GS CIM 004 V1.1.2 (2020-06)118

Table F-3: Gap summary between current APIs and general triple query patterns

< s, p, o > < s, p, o > < s, p, o >
- Entity Id: person32,
to query all information about this
person32

- Relationship: connectedTo,
to query all entities that are connected
with each other, e.g. in blockchain

- value: sick,
to query all entities with properties that
have the value "sick"

/entities/{entityId} Not supported Not supported
< s, p, o > < s, p, o > < s, p, o >

- Entity Id: person32
- Relationship: hasContact
to query all objects corresponding to
person32 and hasContact
Relationship

- Entity Id: person32
- Entity Id: person33
to query all Relationships between
person32 and person33

- Relationship: applyFor
- Entity Id: CIMCertification
to query all entities that apply for CIM
Certification

/entities/{entityId}/attrs/{attrId} Not supported Not supported
< s, p, o >

- Entity Id: person32,
- Relationship: isEmployerOf,
- Entity Id: company20

to query <person32, isEmployerOf, company20>, if the person32 is an employer of the company20.
/entities/{entityId}/attrs/{attrId}.value

ETSI

ETSI GS CIM 004 V1.1.2 (2020-06)119

Annex G (informative):
Roadmap of Functionalities
Table G-1 describes the roadmap of functionalities to be considered for the final NGSI-LD API specification
(Release 1). They are divided into three priority levels:

• High priority. Functionalities that the ISG CIM has committed to address (if after further study it is concluded
that they are feasible, both implementation-wise and specification-wise).

• Medium priority. Functionalities that is highly recommended to deal with and, provided enough resources are
available, they are expected to be addressed.

• Low priority. Functionalities that are not a priority for ISG CIM but which can be considered in the
discussions if good technical contributions come across.

Table G-1: Summary of future functionalities to be addressed

Feature Name/Gap Description Priority

Complete expression
language for queries

Additional logical operators: not, or
Arbitrary levels of bracketing: (,)
Basic mathematical operations (applied to Attributes/ aggregate functions):
+, -, *, /
Null tests: is null, not null

High

Pagination of results

Enable pagination of query results involving NGSI-LD elements (Entities,
Context Source Registrations, Context Subscriptions). Study the definition of
cursors to improve iteration processes. Limit maximum number of entities
that are returned in a list

High

Complete Historical
data functionality

Apart from a generic interface between Context Producers and Consumers
for 'real-time' or 'near-real-time' usage many applications would benefit from
the ability to query historical snapshots of entity data e.g. in identifying a
seasonal pattern to data, including:

• Allow representing time series that show temporal evolution
• Define a simplified representation for time series data to facilitate its

consumption by applications, study what oneM2M has already defined
• Applications should be able to retrieve instances of entities over a

defined period of time
• There should also be support for retrieving at intervals e.g. Entities at

one or more specific times of day e.g. 6pm, hourly, daily (different
granularities)

• Retrieve Entity Property Value stored at/before given date/time.
Result data includes actual date/time stored at server (except where
aggregate operations used)

• Query Entity (sensor/ context data points) recorded over a specified
date/ time range

• Query Entity (sensor/ context data points) recorded at defined
intervals over a specified date/ time range

• Result ordering rules based on Entity creation date/time ascending/
descending. Multiple ordering criteria can be specified

High

Query Subscriptions Enable queries over Subscriptions so that they can be filtered out properly High

Extend Subscription
functionality

Allow specifying the maximum limit of Entities provided when notifying

Provide the capability of subscribing to higher level events (Entity creation,
Entity modification, Entity deletion, etc.)

Use HTTP PUT method for delivering notifications

High

Extend Context
Source Registration
Functionality

Allow adding custom, query-able members to Context Source Registrations.
For instance, extra metadata about the Context Source (accuracy of the
information provided, associated place, etc.)

High

Entity versioning
mechanism

Specify clearly mechanisms to support the evolution of information models High

Operations to manage
historical time series

Add instances to time series
Modify instances of time series
Remove instances from time series

High

ETSI

ETSI GS CIM 004 V1.1.2 (2020-06)120

Feature Name/Gap Description Priority

Security Add mechanisms to the API to enable all the Security requirements and
findings required by the corresponding work item High

Multiple Typing of
entities, relationships
and properties

Future versions of the data model should support the possibility for an
instance of entities, relationships and properties to inherit multiple
categories/classes as defined by the cross-domain ontology and, potentially,
domain-specific ontologies

High

Queries over deeply
structured data

Complete the query language to allow for Entity selection based on sub-
elements of an Entity/Attribute
Develop a more sophisticated specification for returning only those
Attributes/ sub-elements required by the consuming application

Medium

Queries based on
triple patterns as
suggested by annex F

Study how triple patterns could be supported as an extended and more
versatile query language. What are the costs? Are they really feasible? Medium

Aggregate operators
for queries

In many applications it is useful to be able to use aggregate functions
provided by the database layer rather than the application having to retrieve
all records and then perform the aggregate function. This is also normally
more resource efficient both on the server and application side. The query
specification would be improved by the support of the following:

• Return a count of matching records (multiple Entities/ historical
Entities)

• Return a sum of an Attribute's value across matching records
(multiple Entities/ historical Entities)

Return the average, minimum or maximum value of an attribute's value
across matching records (multiple Entities/ historical Entities)

Medium

Order by
Order matched Entities by Attribute Name with ordering directives
(ascending, descending). Multiple ordering criteria can be specified. Study
implications in distributed architectures

Medium

Batch operations Specify operations that allow to manipulate multiple entities at the same
time. Creation, Deletion, Modification, etc.

Medium

Privacy Add mechanisms to the API to enable all the Privacy requirements and
findings required by the corresponding work item

Medium

Internationalization Support internationalized content and queries exploiting JSON-LD
capabilities for string internationalization

Medium

Extended Geo-queries Further study of other operators and geo-relationships for a richer set of
geo-queries

Medium

Queries traversing the
graph through
Relationships

API allows retrieval of explicitly Linked Entities

API allows specification of which Linked Entities are to be returned

API allows specification of which Linked Entity fields are to be returned

Entity references returned which allow direct retrieval

Where there are Relationships between historical Entities there needs to be
support to retrieve the related Entity data at the same historical time point

Low

Other output formats

Numerical analytics and machine learning generally require data to be
provided in a uniform, tabular format such as available through Excel
worksheets, Comma Separated Value (CSV) text files or Tab Separated
Value (TSV) text files. Whilst the JSON format results is extremely useful for
processing within applications it carries an overhead which means the data
cannot be used immediately within numerical analytics or machine learning
applications without further processing.
Adding support for alternate output formats for results would be an
advantage

Low

ETSI

ETSI GS CIM 004 V1.1.2 (2020-06)121

Annex H (informative):
Open Issues
Table H-1 describes the open issues related to the present document. The ETSI ISG CIM is expected to fix them in the
final NGSI-LD API Specification. It is noteworthy that some of them may overlap with the roadmap presented in
annex G, particularly those related to "historical data functionality".

Table H-1: Summary of open issues

Issue Number Description
ISSUE-001 Should the NGSI-LD query language rely on regular expressions or just provide an

SQL-like pattern language?
ISSUE-002 Should NGSI-LD generalize Subscriptions so that any NGSI-LD element (Entity,

Context Source Registration, Subscription) can be subscribed to?
Is it possible to get rid of the duplication of Context Source Subscription?

ISSUE-003 Clarify how the update operations for Entities work. Should usage of JSON Merge
Patch, which does not allow to have null values in Entities, continue? Should the
JSON Patch (IETF RFC 6902 [i.10]) be used instead?

ISSUE-004 TemporalProperty on arbitrary properties, is it really needed?
ISSUE-005 Clarify how historical data collection works, making it clear that temporal queries

are queries associated to Entity's history
In the absence of temporal dimension regular queries operate over the last
value/object of Attributes (Properties or Relationships)

How temporal queries combine with filter queries?
Proposal to be discussed: If a temporal query is used then filter query operates
over the whole history under scope as per the temporal conditions.

Think more about use cases combining filter queries and historical queries.

ISSUE-006 With regards to temporal queries: what happens if data is recorded every second
but the query should obtain only data every hour over the last 5 days. If the query
asks for data from the last 5 days then too much data will be provided to the
application, which then ignores the vast majority.

ISSUE-007 In the Subscription data type the status member is overloaded, i.e. it is used both
for system-provided information and for changing the subscription status. It is
needed to reconsider it and probably define two different members (one for system
provided details) and the other for controlling the activation status of a subscription.

ISSUE-008 In the abstract description of API operations use tables for describing input and
output parameters instead of bullet points. Consider defining a logical name for
each parameter.

ISSUE-009 In the CsourceRegistration data type consider renaming the member timestamp to
something better, renaming it to "observedTimeRange" in CsourceRegistration data
type.

ISSUE-010 In data types that make use of array collections ([]) clarify in the definition what
happens if the collection is empty or includes null values (or if it is even allowed).

ISSUE-011 When returning a collection of Entities as application/json+ld, instead of encoding
the @context in each entity, provide a single @context that applies to any Entity.
This can be a bit more difficult to be generated when the result set of Entities
pertain to different vocabularies.

ISSUE-012 Should the result of a Context Source Registration Query filter out those constituent
parts of registration records that do not actually match?.

Related to this issue: Should it be recommended to simplify the information
member of the CsourceRegistration structure so that the limit is set to one
EntityInfo and to one set of Properties and Relationships?

ISSUE-013 Refactor Context Source Registration matching so that it is centralized in one
section of the document, avoiding duplication.

Check the document in general to see if it is a better strategy to have always
backwards references.

ISSUE-014 It is needed a mechanism, error code or similar, intended to flag the fact that a
query cannot be resolved or that would take too much time.

ISSUE-015 Align Context Source Registrations clauses with the rest of operation descriptions.

ETSI

ETSI GS CIM 004 V1.1.2 (2020-06)122

Issue Number Description
ISSUE-016 Clarify what happens when an attribute is updated, are all implementations required

to handle time series of values?
What happens if an implementation cannot do it?

ISSUE-017 Use of IRIs in the specification.
ISSUE-018 Physical things vs digital representations issue. Clarify it in the present document.

ETSI

ETSI GS CIM 004 V1.1.2 (2020-06)123

Annex I (informative):
Conventions and syntax guidelines
When new concepts or terms are defined they are marked in bold.

EXAMPLE 1: NGSI-LD Entity Query Term observedAt.

API Parameter names are always in lowercase.

EXAMPLE 2: Options.

Entity Types, JSON-LD node types and Data Types are defined using lowercase but with a starting capital letter.

EXAMPLE 3: Vehicle Property Relationship DateTime.

JSON-LD terms are always defined using camel case notation starting with lower case.

EXAMPLE 4: createdAt value unitCode.

When referring to special terms or words, defined previously in the present document or by other referenced
specifications, italics format is used.

EXAMPLE 5: GeoProperty Geometry Second Number.

When referring to literal strings double quotes are used.

EXAMPLE 6: "application/json" "Subscription".

When referring to the JSON-LD Context the mnemonic text string @context is used as a placeholder.

All the dates and times are given in UTC format.

EXAMPLE 7: 2018-02-09T11:00:00.

The measurement units used in the API are those defined by the International System of Units.

EXAMPLE 8: The distance in geo-queries is provided in meters.

When defining application-specific elements or API extensions the same conventions and syntax guidelines should be
followed.

ETSI

ETSI GS CIM 004 V1.1.2 (2020-06)124

Annex J (informative):
Change history

Date Version Information about changes
February 2017 0.0.1 First draft
July 2017 0.0.5 Berlin workshop version
October 2017 0.0.6 After NGSI-LD Information Model Discussions
November 2017 0.0.7 After Ghent Workshop
December 2017 0.0.8 After Plenary in Sophia
January 2018 0.0.10 NGSI-LD. Csource Registration. Csource Subscription
February 2018 0.0.11 Information Model revised. Terminology revised. Examples revised
March 2018 0.0.11 Some formal changes in final TB approved draft before first ETSI publication V1.1.1
March 2018 1.1.1 ETSI Publication

May 2020 1.1.2 ETSI Publication where the historical Preliminary API work is replaced by the normative
ETSI GS CIM 009 NGSI-LD API [20]

ETSI

ETSI GS CIM 004 V1.1.2 (2020-06)125

History

Document history

V1.1.1 April 2018 Publication

V1.1.2 June 2020 Publication

	Intellectual Property Rights
	Foreword
	Modal verbs terminology
	Executive summary
	Introduction
	1 Scope
	2 References
	2.1 Normative references
	2.2 Informative references

	3 Definition of terms, symbols and abbreviations
	3.1 Terms
	3.2 Symbols
	3.3 Abbreviations

	4 Context Information Management Framework
	4.1 Introduction
	4.2 NGSI-LD Information Model
	4.2.1 Introduction
	4.2.2 NGSI-LD Meta Model
	4.2.3 Cross Domain Ontology
	4.2.4 NGSI-LD domain-specific models and instantiation
	4.2.5 UML representation

	4.3 NGSI-LD Architectural considerations
	4.3.1 Introduction
	4.3.2 Centralized architecture
	4.3.3 Distributed architecture
	4.3.4 Federated architecture

	4.4 Core NGSI-LD @context
	4.5 NGSI-LD Data Representation
	4.5.1 NGSI-LD Entity Representation
	4.5.2 NGSI-LD Property Representation
	4.5.3 NGSI-LD Relationship Representation
	4.5.4 Simplified Representation

	4.6 Data Representation Restrictions
	4.6.1 Supported text encodings
	4.6.2 Supported names
	4.6.3 Supported data types for Values
	4.6.4 Supported Entity Content

	4.7 Geospatial Properties
	4.7.1 GeoJSON Geometries
	4.7.2 Representation of GeoJSON Geometries in JSON-LD

	4.8 Temporal properties
	4.9 NGSI-LD Query Language
	4.10 NGSI-LD Geo-query language
	4.11 NGSI-LD Temporal Query language

	5 API Operation Definition
	5.1 Introduction
	5.2 Data types
	5.2.1 Introduction
	5.2.2 Common members
	5.2.3 @context
	5.2.4 Entity
	5.2.5 Property
	5.2.6 Relationship
	5.2.7 GeoProperty
	5.2.8 EntityInfo
	5.2.9 CsourceRegistration
	5.2.10 RegistrationInfo
	5.2.11 TimeInterval
	5.2.12 Subscription
	5.2.13 GeoQuery
	5.2.14 NotificationParams
	5.2.14.1 NotificationParams data type definition
	5.2.14.2 Additional members

	5.2.15 EndPoint

	5.3 Notification data types
	5.3.1 Notification
	5.3.2 CsourceNotification
	5.3.3 TriggerReasonEnumeration

	5.4 NGSI-LD Fragments
	5.5 Common behaviours
	5.5.1 Introduction
	5.5.2 Error types
	5.5.3 Error payloads
	5.5.4 JSON-LD validation
	5.5.5 Default @context assignment
	5.5.6 Operation execution
	5.5.7 Term to URI expansion
	5.5.8 JSON-LD Merge Patch Behaviour

	5.6 Context Information Provision
	5.6.1 Create Entity
	5.6.1.1 Description
	5.6.1.2 Use case diagram
	5.6.1.3 Input data
	5.6.1.4 Behaviour
	5.6.1.5 Output data

	5.6.2 Update Entity Attributes
	5.6.2.1 Description
	5.6.2.2 Use case diagram
	5.6.2.3 Input data
	5.6.2.4 Behaviour
	5.6.2.5 Output data

	5.6.3 Append Entity Attributes
	5.6.3.1 Description
	5.6.3.2 Use case diagram
	5.6.3.3 Input data
	5.6.3.4 Behaviour
	5.6.3.5 Output data

	5.6.4 Partial Attribute update
	5.6.4.1 Description
	5.6.4.2 Use case diagram
	5.6.4.3 Input data
	5.6.4.4 Behaviour
	5.6.4.5 Output data

	5.6.5 Delete Entity Attribute
	5.6.5.1 Description
	5.6.5.2 Use case diagram
	5.6.5.3 Input data
	5.6.5.4 Behaviour
	5.6.5.5 Output data

	5.6.6 Delete Entity
	5.6.6.1 Description
	5.6.6.2 Use case diagram
	5.6.6.3 Input data
	5.6.6.4 Behaviour
	5.6.6.5 Output data

	5.7 Context Information Consumption
	5.7.1 Retrieve Entity
	5.7.1.1 Description
	5.7.1.2 Use case diagram
	5.7.1.3 Input data
	5.7.1.4 Behaviour
	5.7.1.5 Output data

	5.7.2 Query Entities
	5.7.2.1 Description
	5.7.2.2 Use case diagram
	5.7.2.3 Input data
	5.7.2.4 Behaviour
	5.7.2.5 Output data

	5.8 Context Information Subscription
	5.8.1 Create Subscription
	5.8.1.1 Description
	5.8.1.2 Use case diagram
	5.8.1.3 Input data
	5.8.1.4 Behaviour
	5.8.1.5 Output data

	5.8.2 Update Subscription
	5.8.2.1 Description
	5.8.2.2 Use case diagram
	5.8.2.3 Input data
	5.8.2.4 Behaviour
	5.8.2.5 Output data

	5.8.3 Retrieve Subscription
	5.8.3.1 Description
	5.8.3.2 Use case diagram
	5.8.3.3 Input data
	5.8.3.4 Behaviour
	5.8.3.5 Output data

	5.8.4 Query Subscriptions
	5.8.4.1 Description
	5.8.4.2 Use case diagram
	5.8.4.3 Input data
	5.8.4.4 Behaviour
	5.8.4.5 Output data

	5.8.5 Delete Subscription
	5.8.5.1 Description
	5.8.5.2 Use case diagram
	5.8.5.3 Input data
	5.8.5.4 Behaviour
	5.8.5.5 Output data

	5.8.6 Notification behaviour

	5.9 Context Source Registration
	5.9.1 Introduction
	5.9.2 Register Context Source
	5.9.2.1 Description
	5.9.2.2 Use case diagram
	5.9.2.3 Input data
	5.9.2.4 Behaviour
	5.9.2.5 Output data

	5.9.3 Update Context Source Registration
	5.9.3.1 Description
	5.9.3.2 Use case diagram
	5.9.3.3 Input data
	5.9.3.4 Behaviour
	5.9.3.5 Output data

	5.9.4 Delete Context Source Registration
	5.9.4.1 Description
	5.9.4.2 Use case diagram
	5.9.4.3 Input data
	5.9.4.4 Behaviour
	5.9.4.5 Output data

	5.10 Context Source Discovery
	5.10.1 Retrieve Context Source Registration
	5.10.1.1 Description
	5.10.1.2 Use case diagram
	5.10.1.3 Input data
	5.10.1.4 Behaviour
	5.10.1.5 Output data

	5.10.2 Query context source registrations
	5.10.2.1 Description
	5.10.2.2 Use case diagram
	5.10.2.3 Input data
	5.10.2.4 Behaviour
	5.10.2.5 Output data

	5.11 Context Source Registration Subscription
	5.11.1 Introduction
	5.11.2 Create Context Source Registration Subscription
	5.11.2.1 Description
	5.11.2.2 Use case diagram
	5.11.2.3 Input data
	5.11.2.4 Behaviour
	5.11.2.5 Output data

	5.11.3 Update context source discovery subscription
	5.11.3.1 Description
	5.11.3.2 Use case diagram
	5.11.3.3 Input data
	5.11.3.4 Behaviour
	5.11.3.5 Output data

	5.11.4 Retrieve context source discovery subscription
	5.11.4.1 Description
	5.11.4.2 Use case diagram
	5.11.4.3 Input data
	5.11.4.4 Behaviour
	5.11.4.5 Output data

	5.11.5 Query Context Source Discovery subscriptions
	5.11.5.1 Description
	5.11.5.2 Use case diagram
	5.11.5.3 Input data
	5.11.5.4 Behaviour
	5.11.5.5 Output data

	5.11.6 Delete context source discovery subscription
	5.11.6.1 Description
	5.11.6.2 Use case diagram
	5.11.6.3 Input data
	5.11.6.4 Behaviour
	5.11.6.5 Output data

	5.11.7 Notification behaviour

	5.12 Matching Context Source Registrations

	6 API HTTP binding
	6.1 Introduction
	6.2 Global definitions and resource structure
	6.3 Common behaviours
	6.3.1 Introduction
	6.3.2 Error types
	6.3.3 Reporting errors
	6.3.4 HTTP request preconditions
	6.3.5 JSON-LD @context resolution
	6.3.6 HTTP response common requirements
	6.3.7 Simplified representation of entities
	6.3.8 Notification behaviour
	6.3.9 Csource Notification behaviour

	6.4 Resource: entities
	6.4.1 Description
	6.4.2 Resource definition
	6.4.3 Resource methods
	6.4.3.1 POST
	6.4.3.2 GET

	6.5 Resource: entities/{entityId}
	6.5.1 Description
	6.5.2 Resource definition
	6.5.3 Resource methods
	6.5.3.1 GET
	6.5.3.2 DELETE

	6.6 Resource: entities/{entityId}/attrs
	6.6.1 Description
	6.6.2 Resource definition
	6.6.3 Resource methods
	6.6.3.1 POST
	6.6.3.2 PATCH

	6.7 Resource: entities/{entityId}/attrs/{attrId}
	6.7.1 Description
	6.7.2 Resource definition
	6.7.3 Resource methods
	6.7.3.1 PATCH
	6.7.3.2 DELETE

	6.8 Resource: csources
	6.8.1 Description
	6.8.2 Resource definition
	6.8.3 Resource methods
	6.8.3.1 POST
	6.8.3.2 GET

	6.9 Resource: csources/{registrationId}
	6.9.1 Description
	6.9.2 Resource definition
	6.9.3 Resource methods
	6.9.3.1 GET
	6.9.3.2 PATCH
	6.9.3.3 DELETE

	6.10 Resource: subscriptions
	6.10.1 Description
	6.10.2 Resource definition
	6.10.3 Resource methods
	6.10.3.1 POST
	6.10.3.2 GET

	6.11 Resource: subscriptions/{subscriptionId}
	6.11.1 Description
	6.11.2 Resource definition
	6.11.3 Resource methods
	6.11.3.1 GET
	6.11.3.2 PATCH
	6.11.3.3 DELETE

	6.12 Resource: csourceSubscriptions
	6.12.1 Description
	6.12.2 Resource definition
	6.12.3 Resource methods
	6.12.3.1 POST
	6.12.3.2 GET

	6.13 Resource: csourceSubscriptions/{subscriptionId}
	6.13.1 Description
	6.13.2 Resource definition
	6.13.3 Resource methods
	6.13.3.1 GET
	6.13.3.2 PATCH
	6.13.3.3 DELETE

	Annex A (normative): NGSI-LD identifier considerations
	A.1 Introduction
	A.2 Entity identifiers
	A.3 NGSI-LD namespace

	Annex B (normative): Core NGSI-LD @context definition
	Annex C (informative): Examples of using the API
	C.1 Introduction
	C.2 Entity Representation
	C.2.1 Property Graph
	C.2.2 Vehicle Entity
	C.2.3 Parking Entity
	C.2.4 @context

	C.3 Context Source Registration
	C.4 Context Subscription
	C.5 HTTP REST API Examples
	C.5.1 Introduction
	C.5.2 Create Entity of Type Vehicle
	C.5.2.1 HTTP Request
	C.5.2.2 HTTP Response

	C.5.3 Query Entities
	C.5.3.1 Introduction
	C.5.3.2 HTTP Request
	C.5.3.3 HTTP Response

	Annex D (informative): Transformation Algorithms
	D.1 Introduction
	D.2 Algorithm for transforming an NGSI-LD Entity into a JSON-LD document (ALG1)
	D.3 Algorithm for transforming a NGSI-LD Property into JSON-LD (ALG1.1)
	D.4 Algorithm for transforming a NGSI-LD Relationship into JSON-LD (ALG1.2)

	Annex E (informative): RDF-compatible specification of NGSI-LD meta-model
	E.1 NGSI-LD Terms and categories: definitions
	E.2 Bridging Property graphs and RDF graphs
	E.3 Tentative formal definition of NGSI-LD information model
	E.3.1 Introduction
	E.3.2 Core Meta-Model
	E.3.3 Cross-Domain Meta-Model

	E.4 Example
	E.5 Complete Ontology in Turtle RDF Syntax

	Annex F (informative): Gap analysis on the relationship of NGSI-LD and general triple-based queries
	Annex G (informative): Roadmap of Functionalities
	Annex H (informative): Open Issues
	Annex I (informative): Conventions and syntax guidelines
	Annex J (informative): Change history
	History

